21 research outputs found

    Synthesis of Zinc Phosphonated Poly(ethylene imine) and Its Fire-Retardant Effect in Low-Density Polyethylene

    Get PDF
    A novel oligomeric intumescent fire-retardant chelate, zinc phosphonated poly(ethylene imine) (Zn-PEIP), with a variable Zn2+ loading, was synthesized. The chemical structure of Zn-PEIP was confirmed by FTIR, 13C NMR, and 31P NMR spectroscopies. The thermal behavior and fire retardancy of low-density polyethylene (LDPE) containing 25 wt % Zn-PEIPs with different amounts of Zn2+ were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI) measurements, and cone calorimetry. The TGA results showed that higher concentrations of Zn2+ improved the thermal stability and increased the residue yield of LDPE. However, the data from the LOI and cone calorimetry tests showed that there is an optimum concentration of Zn2+ for the best fire-retardancy performance of LDPE. This behavior is ascribed to the high cross-link density resulting from zinc bridges, preventing normal swelling of the intumescent system. The surface morphology of the char was characterized by digital photography and scanning electron microscopy (SEM). This confirmed the optimum intumescence and coherent and strong barrier layer formation at an intermediate Zn2+ loading

    The influence of blade curvature radius on the internal unsteady characteristics of a centrifugal pump

    No full text
    Abstract To study the influence of the blade curvature radius on the flow‐induced vibration and noise of the centrifugal pump, the internal sound field of the IS 80‐65‐160 centrifugal pump was numerically calculated by adjusting the blade wrap angles to change the blade curvature radius. The RNG k − ε (Reynolds Time Average Simulation) turbulence model was selected for the numerical calculation of the centrifugal pump. The numerical simulation of the whole flow channel of the centrifugal pump was carried out using Ansys Fluent software, and the external characteristic curve of the centrifugal pump was obtained. The influence of different blade wrap angles on the internal pressure, velocity and Turbulent Kinetic Energy of the centrifugal pump was obtained. On the basis of the sound–structure coupling equation, the unsteady sound field of the centrifugal pump was calculated, and the time domain and frequency domain characteristics of the pressure pulsation at each monitoring point were obtained. The calculation results showed that the dynamic and static interference between the impeller and the volute tongue mainly caused the vibration of the centrifugal pump. By appropriately increasing the blade wrap angles, the pressure pulsation in the volute fluid domain could be effectively reduced. The vibration and noise test bench of the centrifugal pump was set up to verify the test. The experimental results showed that at the double‐blade frequency, the variation trend of the experimental value and the simulated value of the outflow flow‐induced noise of the centrifugal pump were consistent, which verified the accuracy of the sound field simulation calculation. When the blade wrap angle φ = 125 ∘, it could effectively reduce the internal sound pressure level and the flow‐induced vibration and noise of the centrifugal pump. By adopting measures such as grid encryption at the position of the tongue, nonstationary calculation and comparison of different turbulence models, the accuracy of the calculation results of the internal flow field and sound field of the centrifugal pump is effectively improved, and the accuracy and reliability of the experimental results are ensured. The above research results had certain reference significance and application value for improving the working efficiency of centrifugal pumps and reducing flow‐induced vibration and noise

    Polypropylene nanocomposites based on C60-decorated carbon nanotubes: thermal properties, flammability, and mechanical properties

    No full text
    In the present study, the effects of covalently functionalized carbon nanotubes (CNTs) decorated with C60 (abbr. C60-d-CNT) on thermal, flame retardancy and mechanical properties of polypropylene (PP) are investigated. Compared with pristine CNTs, the C60-d-CNT is more easily dispersed in the PP matrix through reactive compatibilization. With the incorporation of C60-d-CNT, thermal oxidation degradation of PP is considerably delayed. Compared to PP, at 1.0 wt% loading of C 60-d-CNT, the initial degradation temperature (T5) and maximum weight loss temperature (Tmax) in air are enhanced by 68°C and 87°C, respectively. Furthermore, incorporating 1.0 wt% C 60-d-CNT can remarkably reduce the peak heat release rate (PHRR) by 71% relative to that of PP, and slow down the combustion process to some extent. The free-radical trapping effect of C60 and the CNTs network are responsible for the improved thermal and flame retardancy properties. Meanwhile, addition of C60-d-CNT also causes enhanced mechanical properties of PP nanocomposites to a certain degree

    У гародчыку на трасоччыну

    Get PDF
    У гародчыку на трасоччыну, / Хрыстос васкрэс, сын Божы!* / Не так ружа зацвітае — / Ніхто тае ружы не шчытае

    Thermal degradation and flame retardancy properties of ABS/lignin: effects of lignin content and reactive compatibilization

    No full text
    Effects of alkali lignin incorporation and in situ reactive compatibilization on the thermal stability and flame retardancy of ABS were investigated. Morphology observations show that lignin can form submicron dispersed phases in ABS matrix regardless of compatibilization. Thermal analyses show that lignin will cause a slight thermal instability of ABS due to its relatively lower thermal stability, and compatibilization reaction has little effluence on that. However, lignin can slow the degradation process and increase the char residue of ABS with increasing lignin loading, and the compatibilization does not markedly affect them. Cone calorimeter tests demonstrate that lignin can significantly reduce the heat release rate, and slow the combustion process of ABS, e.g., 20 wt% lignin causing a 32% reduction in peak heat release rate (PHRR). The compatibilization can further reduce the flammability of ABS due to the improved char layer. The char residue analyses indicate that the formation of protective char layer of lignin is primarily responsible for the enhanced flame retardancy

    Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties

    No full text
    Abstract: Despite the great potential of graphene as the nanofiller, to achieve homogeneous dispersion remains the key challenge for effectively reinforcing the polymer. Here, we report an eco-friendly strategy for fabricating the polymer nanocomposites with well-dispersed graphene sheets in the polymer matrix via first coating graphene using polypropylene (PP) latex and then melt-blending the coated graphene with PP matrix. A ∼75% increase in yield strength and a ∼74% increase in the Young's modulus of PP are achieved by addition of only 0.42 vol% of graphene due to the effective external load transfer. The glass transition temperature of PP is enhanced by ∼2.5 °C by incorporating only 0.041 vol% graphene. The thermal oxidative stability of PP is also remarkably improved with the addition of graphene, for example, compared with neat PP, the initial degradation temperature is enhanced by 26 °C at only 0.42 vol% of graphene loading

    Effect of lignin incorporation and reactive compatibilization on the morphological, rheological, and mechanical properties of ABS resin

    No full text
    In order to develop the potential application of industrial alkali lignin, its acrylonitrile-butadiene-styrene (ABS) composites were fabricated via melt blending in the absence/presence of a compatibilizer. The lignin can uniformly disperse in the ABS matrix with number-average dispersed-phase domains of sub-micron scale, ranging from 150-250 nm, as observed by scanning electron microscopy. Infrared spectroscopy reveals that strong intermolecular interactions, mainly hydrogen bonding, were responsible for their good interfacial compatibility. Rheological behaviors show that the presence of lignin restricts to some extent the relaxation of polymer chains without affecting the processing properties of ABS resin. The presence of lignin increases storage modulus and glass transition temperature (T g) of ABS. Incorporating small amounts of lignin, e.g. 5 wt%, can produce ABS composites with enhanced tensile strength and modulus, while higher loading of lignin will reduce mechanical properties. The latter, however, can be improved by reactive compatibilization

    Effect of lignin incorporation and reactive compatibilization on the morphological, rheological, and mechanical properties of ABS resin

    Get PDF
    In order to develop the potential application of industrial alkali lignin, its acrylonitrile-butadiene-styrene (ABS) composites were fabricated via melt blending in the absence/presence of a compatibilizer. The lignin can uniformly disperse in the ABS matrix with number-average dispersed-phase domains of sub-micron scale, ranging from 150-250 nm, as observed by scanning electron microscopy. Infrared spectroscopy reveals that strong intermolecular interactions, mainly hydrogen bonding, were responsible for their good interfacial compatibility. Rheological behaviors show that the presence of lignin restricts to some extent the relaxation of polymer chains without affecting the processing properties of ABS resin. The presence of lignin increases storage modulus and glass transition temperature (T g) of ABS. Incorporating small amounts of lignin, e.g. 5 wt%, can produce ABS composites with enhanced tensile strength and modulus, while higher loading of lignin will reduce mechanical properties. The latter, however, can be improved by reactive compatibilization
    corecore