108 research outputs found

    Uncertainty-Aware Consistency Regularization for Cross-Domain Semantic Segmentation

    Full text link
    Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new target domain with only unlabeled data. Many adversarial-based UDA methods involve high-instability training and have to carefully tune the optimization procedure. Some non-adversarial UDA methods employ a consistency regularization on the target predictions of a student model and a teacher model under different perturbations, where the teacher shares the same architecture with the student and is updated by the exponential moving average of the student. However, these methods suffer from noticeable negative transfer resulting from either the error-prone discriminator network or the unreasonable teacher model. In this paper, we propose an uncertainty-aware consistency regularization method for cross-domain semantic segmentation. By exploiting the latent uncertainty information of the target samples, more meaningful and reliable knowledge from the teacher model can be transferred to the student model. In addition, we further reveal the reason why the current consistency regularization is often unstable in minimizing the distribution discrepancy. We also show that our method can effectively ease this issue by mining the most reliable and meaningful samples with a dynamic weighting scheme of consistency loss. Experiments demonstrate that the proposed method outperforms the state-of-the-art methods on two domain adaptation benchmarks, i.e.,i.e., GTAV \rightarrow Cityscapes and SYNTHIA \rightarrow Cityscapes

    Spiking NeRF: Making Bio-inspired Neural Networks See through the Real World

    Full text link
    Spiking neuron networks (SNNs) have been thriving on numerous tasks to leverage their promising energy efficiency and exploit their potentialities as biologically plausible intelligence. Meanwhile, the Neural Radiance Fields (NeRF) render high-quality 3D scenes with massive energy consumption, and few works delve into the energy-saving solution with a bio-inspired approach. In this paper, we propose spiking NeRF (SpikingNeRF), which aligns the radiance ray with the temporal dimension of SNN, to naturally accommodate the SNN to the reconstruction of Radiance Fields. Thus, the computation turns into a spike-based, multiplication-free manner, reducing the energy consumption. In SpikingNeRF, each sampled point on the ray is matched onto a particular time step, and represented in a hybrid manner where the voxel grids are maintained as well. Based on the voxel grids, sampled points are determined whether to be masked for better training and inference. However, this operation also incurs irregular temporal length. We propose the temporal condensing-and-padding (TCP) strategy to tackle the masked samples to maintain regular temporal length, i.e., regular tensors, for hardware-friendly computation. Extensive experiments on a variety of datasets demonstrate that our method reduces the 76.74%76.74\% energy consumption on average and obtains comparable synthesis quality with the ANN baseline

    DMT: Dynamic Mutual Training for Semi-Supervised Learning

    Full text link
    Recent semi-supervised learning methods use pseudo supervision as core idea, especially self-training methods that generate pseudo labels. However, pseudo labels are unreliable. Self-training methods usually rely on single model prediction confidence to filter low-confidence pseudo labels, thus remaining high-confidence errors and wasting many low-confidence correct labels. In this paper, we point out it is difficult for a model to counter its own errors. Instead, leveraging inter-model disagreement between different models is a key to locate pseudo label errors. With this new viewpoint, we propose mutual training between two different models by a dynamically re-weighted loss function, called Dynamic Mutual Training (DMT). We quantify inter-model disagreement by comparing predictions from two different models to dynamically re-weight loss in training, where a larger disagreement indicates a possible error and corresponds to a lower loss value. Extensive experiments show that DMT achieves state-of-the-art performance in both image classification and semantic segmentation. Our codes are released at https://github.com/voldemortX/DST-CBC .Comment: Reformatte

    Context-Aware Mixup for Domain Adaptive Semantic Segmentation

    Get PDF
    Unsupervised domain adaptation (UDA) aims to adapt a model of the labeled source domain to an unlabeled target domain. Existing UDA-based semantic segmentation approaches always reduce the domain shifts in pixel level, feature level, and output level. However, almost all of them largely neglect the contextual dependency, which is generally shared across different domains, leading to less-desired performance. In this paper, we propose a novel Context-Aware Mixup (CAMix) framework for domain adaptive semantic segmentation, which exploits this important clue of context-dependency as explicit prior knowledge in a fully end-to-end trainable manner for enhancing the adaptability toward the target domain. Firstly, we present a contextual mask generation strategy by leveraging the accumulated spatial distributions and prior contextual relationships. The generated contextual mask is critical in this work and will guide the context-aware domain mixup on three different levels. Besides, provided the context knowledge, we introduce a significance-reweighted consistency loss to penalize the inconsistency between the mixed student prediction and the mixed teacher prediction, which alleviates the negative transfer of the adaptation, e.g., early performance degradation. Extensive experiments and analysis demonstrate the effectiveness of our method against the state-of-the-art approaches on widely-used UDA benchmarks.Comment: Accepted to IEEE Transactions on Circuits and Systems for Video Technology (TCSVT
    corecore