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Abstract

Unsupervised domain adaptation (UDA) aims to adapt a
model of the labeled source domain to an unlabeled target
domain. Although the domain shifts may exist in various di-
mensions such as appearance, textures, etc, the contextual
dependency, which is generally shared across different do-
mains, is neglected by recent methods. In this paper, we uti-
lize this important clue as explicit prior knowledge and pro-
pose end-to-end Context-Aware Mixup (CAMix) for domain
adaptive semantic segmentation. Firstly, we design a con-
textual mask generation strategy by leveraging accumulated
spatial distributions and contextual relationships. The gen-
erated contextual mask is critical in this work and will guide
the domain mixup. In addition, we define the significance
mask to indicate where the pixels are credible. To alleviate
the over-alignment (e.g., early performance degradation),
the source and target significance masks are mixed based on
the contextual mask into the mixed significance mask, and
we introduce a significance-reweighted consistency loss on
it. Experimental results show that the proposed method out-
performs the state-of-the-art methods by a large margin on
two widely-used domain adaptation benchmarks, i.e., GTAV
→ Cityscapes and SYNTHIA→ Cityscapes. 1

1. Introduction

Semantic segmentation aims to assign a semantic label
to each pixel for a given image. Over the past few years,
researchers have made great efforts to explore a variety of
CNN methods trained on a large-scale segmentation dataset
to tackle this problem [1, 2]. However, building such a
large annotated dataset is both cost-expensive and time-
consuming due to the process of annotating pixel-wise la-
bels [9]. A natural idea to overcome this bottleneck is using
synthetic data to supervise the segmentation model instead
of real data [34, 35]. However, the existing domain gap be-
tween the synthetic images and real images often leads to a
significant performance drop when the learned source mod-

1Our source code will be released.

(a) source domain (b) target domain 

Figure 1. Previous domain adaptation methods neglect the shared
context dependency across different domains and could result in
severe negative transfer and training instability. We observe that
exploiting contexts as explicit prior knowledge is essential when
adapting from the source domain to the target domain.

els are directly applied to the unlabelled target data.
To address this issue, various unsupervised domain adap-

tation (UDA) techniques have been proposed to reduce
the domain gap in pixel level [15, 52, 22, 18], feature
level [24, 7, 58, 57] and output level [40, 25, 44, 5]. Among
them, the most common practices are based on adversar-
ial learning [40, 25, 44, 5], self-training [58, 57, 22, 31],
consistency regularization [8, 48, 39], entropy minimiza-
tion [41, 3] etc.

Previous works mainly focused on utilizing com-
mon prior knowledge, e.g., appearances, scales, textures,
weather, etc., to narrow down the domain gap. Neverthe-
less, context dependency across different domains has been
very sparsely exploited so far in UDA, and how to trans-
fer such cross-domain context still remains under-explored.
As shown in Figure 1, we observe that the source and target
images usually share similar semantic contexts, e.g., rider is
over the bicycle or motorcycle, sidewalk is beside the road,
and such context knowledge is crucial particularly when
adapting from the source domain to the target domain. The
lack of context will lead to severe negative transfer, e.g.,
early performance degradation during the adaptation pro-
cess. In addition, most state-of-the-art approaches cannot
be trained end-to-end. They heavily depend on the adver-
sarial learning, image-to-image translation or pseudo label-
ing, and most of them need to fine-tune the models in many
offline stages.

In this paper, we attempt to identify context dependency
across domains as explicit prior domain knowledge when
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adapting from the source domain to the target domain. We
propose context-aware domain mixup (CAMix) to explore
and transfer cross-domain contexts for domain adaptation.
Our whole framework is fully end-to-end. The proposed
CAMix consists of two key components: contextual mask
generation (CMG) and significance-reweighted consistency
loss (SRC).

To be specific, the CMG firstly generates a contextual
mask by selectively leveraging the accumulated spatial dis-
tribution of the source domain and the contextual relation-
ship of the target domain. This mask is critical in our work
and will guide the domain mixup. Guided by it, context-
aware domain mixup is performed in three different levels,
i.e., input level, output level and significance mask level.
Notice that the significance mask is a mask that we define
to indicate where the pixels are credible. This contextual
mask respectively mixes the input images, the labels and
the corresponding significance-masks to narrow down the
domain gap.

In addition, we introduce a SRC loss on the significance
mask level to alleviate the over-alignment, e.g., early per-
formance degradation, during the adaptation process. In
particular, we calculate a significance mask with the help
of the target predictive entropy and its dynamic threshold.
Then, we mix the target and the source significance masks
using the context knowledge as supervisory signals, and uti-
lize the mixed significance mask to reweigh the consistency
loss.

To sum up, we propose a context-aware mixup architec-
ture for domain adaptive semantic segmentation, which is a
fully end-to-end framework. Our contributions are summa-
rized as follows.

• We present a contextual mask generation strategy,
which leverages the spatial distribution of the source
domain and the contextual relationship of the target
domain. It acts as prior knowledge for guiding the
context-aware domain mixup on three different levels.

• We introduce a significance-reweighted consistency
loss, which alleviates the adverse impacts of the adap-
tation procedure, e.g., early performance degradation
and training instability, under the guidance of context.

• Extensive experimental results show that we outper-
form state-of-the-art methods by a large margin on
two challenging UDA benchmarks. We achieve 55.2%
mIoU in GTAV [34] → Cityscapes [9], and 59.7%
mIoU in SYNTHIA [35] → Cityscapes [9], respec-
tively.

2. Related Work
The current mainstream approaches for cross-domain se-

mantic segmentation include adversarial learning [25, 40,

50, 5], consistency regularization [8, 48, 39] and self-
training [58, 57]. As our work is mostly relevant to the latter
two categories, we mainly focus on reviewing them.
Domain mixup: Mixup has been well-studied in other
communities to improve the robustness of models., e.g.,
semi-supervised learning [11, 12], and point cloud clas-
sification [54, 4]. A few works [47, 46, 26] studied
cross-domain mixup in UDA. Nevertheless, these methods
work well on simple and small classification datasets (e.g.
MNIST [20] and SVHN [28]), but can hardly be applied to
more challenging tasks, e.g., domain adaptive semantic seg-
mentation. DACS [39] is designed for segmentation, while
little attention has been paid to exploiting contexts as prior
knowledge to mitigate the domain gaps.
Consistency regularization: The key idea of consistency
regularization is that the target prediction of the student
model and that of the teacher model should be invariant
under different perturbations. The teacher model is an ex-
ponential moving average (EMA) of the student model, and
then the teacher model could transfer the learned knowledge
to the student. Consistency regularization typically appears
in Semi-supervised Learning (SSL) [38] and is recently ap-
plied to UDA recently [8, 33]. For simplicity, we choose
[38] as a base framework to realize end-to-end learning.
Self-training: Self training [58, 57] aims to generate
pseudo labels for the unlabeled target domain, and then
fine-tuned the segmentation model on the pseudo labels it-
eratively in an offline way. Mei et al. [27] concentrated
on the quality of pseudo labels and designed an instance
adaptive self-training. Li et al. presented a self-supervised
learning [22], which alternately trained the image transla-
tion model and the self-supervised segmentation adaptation
model. In addition, CBST-BNN [13] and ESL [36] both
leveraged predictive entropy rather than the maximum soft-
max predicted probabilities to refine the pseudo labels dur-
ing the offline self-training. Our method differs from these
methods in several aspects. Firstly, in contrast to previous
offline self-training that generates pseudo labels and fine-
tunes the segmentation model iteratively in many stages,
our approach can be trained end-to-end in an online man-
ner. Secondly, instead of using a probability-based mask
in common self-training, e.g., [58, 57], we calculate an
entropy-guided mask with a novel significance-reweighted
loss. Thirdly, different from [13, 36] to refine the pseudo la-
bels, our significance mask is calculated based on the prior
knowledge of context information.
Uncertainty estimation: The idea of exploiting model pre-
diction uncertainty has been utilized in domain adaptation
for classification, e.g., Bayesian classifier [45] and Bayesian
discriminator [19]. These methods always require an extra
discriminator in adversarial training, and can work well on
simple and small classification datasets. Our method differs
from these methods in several aspects. At first, we tackle the
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M (Target)
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Figure 2. Overview of the proposed architecture. Firstly, we generate a contextual mask (CMG) by leveraging the spatial distribution of the
source domain and the contextual relationship of the target domain. Guided by this mask M , we perform context-aware mixup (CAMix) in
three levels, i.e., input level, output level and significance mask level. Provided the context knowledge, we design a significance re-weighted
consistency (SRC) loss to ease the over-alignment between the mixed student and teacher prediction.

more challenging task of semantic segmentation rather than
image classification, where the uncertainty of dense pixel-
wise predictions instead of image-wise prediction needs to
be decreased. Secondly, we avoid using adversarial adap-
tation in uncertainty estimation which tends to be unstable
and inaccurate. Thirdly, in comparison with the aforemen-
tioned approaches, we design significance mask level do-
main mixup between the target significance mask and the
source mask, which enables a more informative entropy-
guided mask during the domain mixup.

3. Methodology
Following the UDA protocols [40, 41, 58], we have ac-

cess to the source images XS ∈ S with their corresponding
labels YS . For the target domain T , only unlabeled images
XT ∈ T are available. Unlike existing UDA methods that
overlook the shared context knowledge across domains, we
propose a novel context-aware domain mixup (CAMix) to
exploit and transfer such cross-domain contexts.

Figure 2 shows the overview of our proposed archi-
tecture. Firstly, we present a contextual mask generation
(CMG) strategy for mining the prior spatial distribution
of the source domain and the contextual relationships of
the target domain, thus generating a mask M . Guided by
this mask, we perform an efficient CAMix on three levels,
i.e., input level, output level, and significance mask level
(a mask we define to indicate where the pixels are credi-
ble.). In particular, the teacher model fθ′ is an exponential
moving average (EMA) of the student model fθ. In other
words, the proposed CAMix uses the labeled source sam-

ples and unlabelled target samples to synthesize the mixed
images, the mixed pseudo labels (Section 3.2), and the cor-
responding mixed significance masks (Section 3.3). We in-
troduce a significance-reweighted consistency loss (SRC)
on the significance mask (SigMask) level to alleviate the
over-alignment during the online adaptation procedure.

3.1. Contextual Mask Generation

Intuitively, the source and the target domain share similar
context dependency between domains. With this in mind,
we identify two kinds of semantic contexts as explicit prior
domain knowledge for guiding the domain adaptation pro-
cedure. The former is prior spatial contexts of the source
domain, and the latter is contextual relationships of the cat-
egories in the target domain.

The scenes often have their intrinsic spatial structures,
e.g., sky tends to appear on the top of the image while
roads are more likely to appear on the bottom. It is intu-
itive to explore the spatial relationships of the source do-
main. Thus, we generate a spatial prior matrix Q by count-
ing the class frequencies in the source domain and we treat
it as prior knowledge to regularize the target prediction:
f̂θ′ ← Q � fθ′(XT ), where fθ′(T ) is the target prediction
of the teacher model.

To exploit the contextual relationship, e.g., the traffic
sign should be beside the pole, our core idea is to find the
semantic-related categories of the current class presented in
the image. In other words, these classes that have contextual
relationships to each other can be treated as a meta-class,
and then we copy them together from the target images and

3
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paste them onto the the source images, which prevents cer-
tain semantic categories hanging on an inappropriate con-
text.

Specifically, we first get the spatially-modulated pseudo
label: ỸT ← arg maxc′ f̂θ′ (i, j, c′). Next, we randomly se-
lect half of the classes present in the argmax prediction ỸT ,
namely c. After that, we judge whether each category k ∈ c
presented in ỸT is in the meta-class listm or not. The meta-
class list involves several groups of heuristic meta-classes,
e.g., pole, traffic sign, traffic light, bicycle, motorcycle and
rider, etc, and this list is shared in all experiments. If k ∈ c,
we append the semantic-related classes k̃ of class k to the
current list c.

A binary contextual mask M is generated by setting the
pixels from the final class list c to value 1 in M , and all
others to value 0.

M(i, j) =

{
1, if ỸT (i, j) ∈ c
0, otherwise

, (1)

where i ∈ h, j ∈ w. We iterate each spatial location to
generate the mask. This mask M is then utilized as prior
knowledge to mix the images in the input level, the labels
in output level (Section 3.2), and the significance mask on
the significance mask level (Section 3.3) between the source
domain and the target domain.

3.2. Input-level and Output-level Domain Mixup

In the input level, the image XS and XT sampled from
the source domain and target domain are synthesized into
XM :

XM = M �XT + (1−M)�XS , (2)

where � denotes element-wise multiplication.
The weights Φ

′

t of the teacher model at training step t
are updated by the student’s weights Φt with a smoothing
coefficient α ∈ [0, 1], which can be formulated as follows:

Φ
′

t = α · Φ
′

t−1 + (1− α) · Φt, (3)

where α is the EMA decay that controls the updating rate.
Regarding the output level, the label of source domain

YS and the pseudo label of target domain ŶT = fθ′(XT )
are mixed as:

YM = M � ŶT + (1−M)� YS . (4)

Different from [39, 29], we mix the images and the cor-
responding labels in a target-to-source direction rather than
the source-to-target direction. In other words, we copy
some categories from the target domain and paste them onto
the source domain, where we can add our consideration of
both spatial relationship and contextual relationship in such
a direction.

3.3. Significance-mask Level Domain Mixup

In the significance-mask (SigMask) level domain mixup,
we decrease the uncertainties of the mixed teacher predic-
tion with the guidance of contextual mask M as additional
supervisory signals. As a result, we are able to alleviate
the adverse impact, e.g., training instability and early per-
formance degradation, and transfer more reasonable knowl-
edge from the teacher to the student.
Stochastic forward passes. In particular, we repeat each
target image for N copies and inject a random Gaussian
noise for each target sample copy. Then, given a set of
pixel-wise predicted class scores {P (h,w,c)

i (xt)}Ni=1 of tar-
get samples, we can get the mean of the predictive proba-
bility P̂c of the c-th class:

P̂c =
1

N

N∑
i=1

P
(h,w,c)
i (XT ). (5)

Note that we do not use any dropout layers during stochastic
forward passes. The predictive entropy ζ is calculated as:

ζ(h,w) = −
C∑
c=1

P̂c · log(P̂c), (6)

where all volumes of pixel-wise entropy forms a set K =
{ζ}Ni=1.
Dynamic threshold. A dynamic threshold H is then de-
termined by the predictive entropy rather than the softmax
probabilities to filter out the unreliable pixel-wise predic-
tions:

H = β + (1− β) · eγ(1−t/tmax)
2

·Ksup, (7)

where t denotes the current training step and tmax is the
maximum training step. Ksup means the upper-bound of
the volumes’ self-information, which is denoted as: Ksup =
sup{ζ}Ni=1. We use the same β and γ by default in all ex-
periments.
Significance mask. We denote the SigMask UT = I(ζ <
H), where I is an indicator function. Note that although the
predictive entropy ζ(h,w) is similar to ADVENT [41], we do
not perform entropy minimization at all, and our SigMask
UT is calculated from Eq. (5) to Eq. (7) in a completely
different way, with the help of target predictive entropy ζ
and its dynamic threshold H .

Given the contextual mask M as additional supervisory
signals, we perform SigMask level domain mixup. The sig-
nificance mask of the source domain US and the target do-
main UT are mixed into UM :

UM = M � UT + (1−M)� US , (8)

where US is a tensor full of 1, because the source labels are
provided without uncertainties. And these certain areas do
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not need to reweigh the consistency loss. Only the uncertain
areas in the target UT which is below the dynamic threshold
H , are set to 0 to reweigh the consistency loss.
Significance-reweighted consistency loss. To encourage
the teacher model to transfer more credible knowledge to
the student model, we define a SRC loss with the guidance
of UM :

Lcon (fθ′ , fθ) =

∑
j (UM · CE(fθ(XM ), YM ))∑

j UM
, (9)

where fθ′ and fθ are the teacher model and the student
model, respectively. CE is the abbreviation of the cross-
entropy loss. The pixel-wise SigMask UM is used to
reweigh the consistency loss in a weighted averaging man-
ner.

Algorithm 1: Context-Aware Mixup
Input: student model fθ, teacher model fθ′ ,

source domain DS , target domain DT ,
total iterations N .

Output: teacher model fθ′ .

Initialize network parameters θ randomly. ;
for i=1 to N do

XS , YS ∼ DS ;
XT ∼ DT ;
ŶT ← fθ′(XT );
XM ← Input-level mixup by Eq.(2);
ŶS ← fθ (XS) , ŶM ← fθ (XM );
YM ← Output-level mixup by Eq.(4);
UT ← Target SigMask by Eq.(5)∼Eq.(7) ;
UM ← SigMask-level mixup by Eq.(8);
Ltotal ← Total loss by Eq.(11);
Compute∇θLtotal by backpropagation;
Perform stochastic gradient descent on θ;

end
return fθ′ ;

3.4. End-to-end Training

Segmentation loss. The segmentation loss Lseg is a cross-
entropy loss for optimizing the images from the source do-
main:

Lseg = −
H∑
h=1

W∑
w=1

C∑
c=1

Y
(h,w,c)
S log(P

(h,w,c)
S ), (10)

where YS is the ground truth for source images and PS =
fθ(XS)(h,w,c)) is the segmentation output of source images.
Total loss. During training, all models on three different
levels are jointly trained in an end-to-end manner. The
whole framework is optimized by integrating all the afore-
mentioned loss functions:

Ltotal = Lseg + λconLcon, (11)

where λcon is the weight of consistency loss. The algorithm
of CAMix for the whole training process is illustrated in
Algorithm 1.

4. Experiments

Following common UDA protocols [16, 40], we treat
the labeled synthetic dataset, i.e., GTAV [34] and SYN-
THA [35], as the source domain, and the unlabeled real
dataset i.e., Cityscapes [9] as the target domain.

4.1. Datasets

Cityscapes [9] is a dataset focused on autonomous driving,
which consists of 2,975 images in the training set and 500
images in the validation set. The images have a fixed spa-
tial resolution of 2048 × 1024 pixels. Following common
practice, we trained the model on the unlabelled training set
and report our results on the validation set.
GTAV [34] is a synthetic dataset including 24,966 photo-
realistic images rendered by the gaming engine Grand Theft
Auto V (GTAV). The semantic categories are compatible
between the two datasets. We used all the 19 official train-
ing classes in our experiments.
SYNTHIA [35] is another synthetic dataset composed of
9,400 annotated synthetic images with the resolution of
1280 × 960. Like GTAV, it has semantically compatible
annotations with Cityscapes. Following the prior works [7,
55, 6], we use the SYNTHIA-RAND-CITYSCAPES sub-
set [35] as our training set.

4.2. Implementation Details

In our implementation, we employ DeepLab-v2 [1] with
ResNet 101 backbone [14]. The backbone is pre-trained
on ImageNet [10] and MSCOCO [23]. For the DeepLab-
v2 network, we use Adam as the optimizer. The initial
learning rate is 2.5 × 10−4 which is then decreased using
polynomial decay with an exponent of 0.9. The weight
decay is 5 × 10−5 and the momentum is 0.9. Following
the common UDA protocol [22, 25], when the source do-
main is GTAV, we resize all images to 1280 × 720; when
the source domain is SYNTHIA, we resize all images to
1280 × 760. Then, both the source and target images are
randomly cropped to 512× 512. We use the same data aug-
mentation as DACS [39], i.e., color jittering and Gaussian
blurring. In our SigMask-level CAMix, we perform N = 8
times of stochastic forward passes. Following the previous
consistency regularization works, we use the same adaptive
schedule as CutMix [11] and DACS [39] for the consistency
weight λcon. Our method is implemented in Pytorch on a
single NVIDIA Tesla V100. More details can be found in
the supplementary material.
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Table 1. Comparison results (mIoU) from GTAV to Cityscapes.
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Source Only - 63.3 15.7 59.4 8.6 15.2 18.3 26.9 15.0 80.5 15.3 73.0 51.0 17.7 59.7 28.2 33.1 3.5 23.2 16.7 32.9
BDL [22] CVPR’19 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

APODA [50] AAAI’20 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9
IntraDA [30] CVPR’20 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3

SIM [44] CVPR’20 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
LTIR [18] CVPR’20 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
FDA [52] CVPR’20 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

PCEDA [51] CVPR’20 91.0 49.2 85.6 37.2 29.7 33.7 38.1 39.2 85.4 35.4 85.1 61.1 32.8 84.1 45.6 46.9 0.0 34.2 44.5 50.5
LSE [37] ECCV’20 90.2 40.0 83.5 31.9 26.4 32.6 38.7 37.5 81.0 34.2 84.6 61.6 33.4 82.5 32.8 45.9 6.7 29.1 30.6 47.5

WLabel [32] ECCV’20 91.6 47.4 84.0 30.4 28.3 31.4 37.4 35.4 83.9 38.3 83.9 61.2 28.2 83.7 28.8 41.3 8.8 24.7 46.4 48.2
CrCDA [17] ECCV’20 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6
FADA [43] ECCV’20 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2
LDR [49] ECCV’20 90.8 41.4 84.7 35.1 27.5 31.2 38.0 32.8 85.6 42.1 84.9 59.6 34.4 85.0 42.8 52.7 3.4 30.9 38.1 49.5
CCM [21] ECCV’20 93.5 57.6 84.6 39.3 24.1 25.2 35.0 17.3 85.0 40.6 86.5 58.7 28.7 85.8 49.0 56.4 5.4 31.9 43.2 49.9
DAST [53] AAAI’21 92.2 49.0 84.3 36.5 28.9 33.9 38.8 28.4 84.9 41.6 83.2 60.0 28.7 87.2 45.0 45.3 7.4 33.8 32.8 49.6

Ours - 93.3 58.2 86.5 36.8 31.5 36.4 35.0 43.5 87.2 44.6 88.1 65.0 24.7 89.7 46.9 56.8 27.5 41.1 56.0 55.2

4.3. Comparison with the State-of-the-Arts

Table 1 and Table 3 present the comparison results with
the state-of-the-arts on two challenging tasks: “GTAV →
Cityscapes” and “SYNTHIA → Cityscapes”. Our pro-
posed method significantly outperforms the state-of-the-art
techniques by 5% ∼ 10% on GTAV → Cityscapes and
6% ∼ 12% on SYNTHIA→ Cityscapes. Also, it is supe-
rior to the non-adaptive baselines by around 22% and 30%
on two benchmarks, respectively.

Most of the state-of-the-art approaches perform the ad-
versarial learning, e.g., APODA [50], IntraDA [30], WLa-
bel [32], MRNet [56], FADA [43] and DADA [42], and they
need to carefully tune the optimization procedure for min-
max problems through a domain discriminator. However,
such domain discriminators tend to be unstable and inaccu-
rate. Instead, our method does not require to maintain an ex-
tra discriminator during the domain adaptation process, and
we outperform these approaches by 6% ∼ 10% in mIoU.

In contrast to the offline self-training methods that need
to fine-tune the models in many rounds, e.g., CRST [57],
LSE [37], CCM [21] and TPLD [31], our whole framework
can be trained in a fully end-to-end manner. Benefiting from
the online consistency regularization by our proposed com-
ponents CMG and SRC, our approach significantly outper-
forms the self-training methods by around 5% ∼ 9%.

Compared to the methods which require an image-to-
image (I2I) translation or style transfer algorithm to fil-
ter out the domain-specific texture or style information,
e.g., BDL [22], LDR [49], LTIR [18], FDA [52] and
PCEDA [51], our context-aware domain mixup does not
require any style/spectral transfer algorithms or deep neu-
ral networks for I2I translation. Our domain mixup algo-
rithm is simple and works very well, and it surpasses the
translation-based methods by around 5% ∼ 8%.

CrCDA [17] learned and enforced the prototypical lo-
cal contextual-relations in the feature space, while the vi-

Table 2. Comparisons with existing domain mixup methods.

method mIoU (%) Gain (%)

Mean Teacher 43.1 –
+ CowMix [12] 48.3 +5.2
+ CutMix [11] 48.7 +5.6
+ DACS [39] 52.1 +9.0

+ iDACS [39] 51.5 +8.4
+ CAMix 55.2 +12.1

sual cues of context knowledge tend to be lost. More-
over, such an learning does not explicitly exploit the cross-
domain contexts and cannot be trained end-to-end. In con-
trast, our CAMix explicitly explores the contexts in the im-
age space rather than the feature space, and our architecture
can be trained end-to-end. Our approach outperforms the
CrCDA [17] by 6.6% and 9.7% in two benchmarks, respec-
tively.

Taking a closer look at per-category performance in Ta-
ble 1 and Table 3, our approach achieves the highest IoU
on most categories, e.g., motorcycle, bicycle, traffic sign,
etc. This phenomenon reveals the effectiveness of CAMix
among different classes during the adaptation process.

4.4. Comparison with the Other Domain Mixup

As shown in Table 2, we present the adaptation results of
our method and the existing domain mixup algorithms on
GTAV→ Cityscapes. We choose the Mean Teacher archi-
tecture [38] as our baseline in this experiment. The existing
domain mixup algorithms are implemented under the same
settings. CowMix [12], CutMix [11] are proposed for semi-
supervised learning (SSL), and we adapt them to the UDA
task, which mixes the source domain image and the target
domain image. Besides, we implement the existing cross-
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Table 3. Comparison results (mIoU) from SYNTHIA to Cityscapes.

Method Venue ro
ad

si
de

w
al

k

bu
ild

in
g

lig
ht

si
gn

ve
ge

ta
tio

n

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
ot

oc
yc

le

bi
ke

m
Io

U
1
3

Source Only - 36.3 14.6 68.8 5.6 9.1 69.0 79.4 52.5 11.3 49.8 9.5 11.0 20.7 29.5
BDL [22] CVPR’19 86.0 46.7 80.3 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4

DADA [42] ICCV’19 89.2 44.8 81.4 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8
APODA [50] AAAI’20 86.4 41.3 79.3 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 53.1
IntraDA [30] CVPR’20 84.3 37.7 79.5 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 48.9

LTIR [18] CVPR’20 92.6 53.2 79.2 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 49.3
SIM [44] CVPR’20 83.0 44.0 80.3 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1
FDA [52] CVPR’20 79.3 35.0 73.2 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5
LSE [37] ECCV’20 82.9 43.1 78.1 9.1 14.4 77.0 83.5 58.1 25.9 71.9 38.0 29.4 31.2 49.4

CrCDA [17] ECCV’20 86.2 44.9 79.5 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 50.0
WLabel [32] ECCV’20 92.0 53.5 80.9 3.8 6.0 81.6 84.4 60.8 24.4 80.5 39.0 26.0 41.7 51.9
CCM [21] ECCV’20 79.6 36.4 80.6 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 52.9
LDR [49] ECCV’20 85.1 44.5 81.0 16.4 15.2 80.1 84.8 59.4 31.9 73.2 41.0 32.6 44.7 53.1

DAST [53] AAAI’21 87.1 44.5 82.3 13.9 13.1 81.6 86.0 60.3 25.1 83.1 40.1 24.4 40.5 52.5
Ours - 91.8 54.9 83.6 23.0 29.0 83.8 87.1 65.0 26.4 85.5 55.1 36.8 54.1 59.7

Table 4. Ablation study of each component in CAMix.

iDACS [39] SP CR SRC mIoU
√

51.5√ √
53.1√ √ √
54.1√ √ √ √
55.2

Table 5. Ablation studuy of the SRC loss

Baseline Mixup Lcon mIoU 4

iDACS [39]
CMG SRC 55.2 -
CMG MSE 44.5 ↓ 9.7
CMG CE 54.2 ↓ 1.0

domain mixup method, e.g., DACS [39] and inverse DACS.
The former DACS means using ClassMix to copy the source
categories and paste them onto the target. Inverse DACS
(iDACS) [39] uses a target-to-source direction.

We analyze that using CowMix [12] results in the oc-
currence of partial objects in the mixed images, which
are harder to learn in the training process. Besides, Cut-
Mix [11], DACS [39] and iDACS tend to result in severe
label contamination and category confusion when generat-
ing the mixed results, thus leading to negative transfer. The
main reason is that they neglect the context dependency as
prior knowledge for facilitating the domain adaptation. The
results shown in Table 2 demonstrate the superiority of our
proposed CAMix to other domain mixup algorithms.

Table 6. Ablation study of each level in CAMix.

MT SigMask In-Out mIoU
(GTAV)

mIoU13

(SYN)

√
43.1 45.9√ √
44.6 47.1√ √ √
55.2 59.7

4.5. Ablation Studies

In this section, we study the effectiveness of each com-
ponent (Table 4) and each level (Table 6) in our approach
and investigate how they contribute to the final performance
when adapting from the GTAV [34] to Cityscapes [9].
Effectiveness of CMG: The CMG strategy is a funda-
mental component of our framework, which is designed
to capture the shared context dependency across domains
for CAMix. Spatial prior (SP) and contextual relationship
(CR) are two key components of CMG. The ablation studies
of each component in CAMix are reported in Table 4. Com-
pared to the baseline (iDACS) [39], SP and CR could suc-
cessfully bring 1.6% and 2.6% of improvements, achieving
53.1% and 54.1% on the former two levels, respectively. By
adding the SRC loss on the SigMask level, we can achieve
an even higher performance of 55.2%.
Effectiveness of SRC: Table 5 shows the contribution of
the SRC loss on the GTAV→ Cityscapes benchmark. The
full CAmix with all three levels and SRC loss achieves
55.2%. If we directly replace the SRC loss with a normal
mean square error (MSE), the result is even worse and only
reaches 44.5%. Using the cross-entropy (CE) as the con-
sistency loss boosts the mIoU to 54.2%, which is still 1.0%
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(a) Input Image (d) Ours(c) DACS(b) Ground Truth

Figure 3. Qualitative segmentation results in the SYNTHIA → Cityscapes setup. The four columns plot (a) RGB input image, (b) ground-
truth, (c) the predictions of DACS [39] and (d) the predictions of our CAMix.

worse than our SRC loss in Eq. (9). The main benefits of
the SRC loss are reflected as follows. The SigMask-level
domain mixup with the SRC loss could further decrease the
uncertainty of the teacher model, and promote the teacher
model to transfer reasonable knowledge to the student, thus
improving the performance. As such, our approach tends to
be more stable and effectively ease these negative impacts,
i.e., training instability and early performance degradation,
during the adaptation process.
Effectiveness of different levels: Table 6 lists the im-
pacts of different levels on the above two settings, i.e., tak-
ing GTAV and SYNTHIA as the source domains, respec-
tively. The Mean Teacher (MT) baseline achieves 43.1%
and 45.9% on two benchmarks, respectively. By adding
the SigMask-level domain mixup, our method respectively
brings +1.5% and +1.2% improvements. By integrating
the CAMix on three levels together, we finally achieve
55.2% and 59.7% mIoU, respectively.

4.6. Visualization

Qualitative segmentation results. Figure 3 visualizes
some segmentation results on the task SYNTHIA →
Cityscapes. As we can see from the figure, due to the
lack of context dependency, DACS [39] incorrectly clas-
sifies some large categories e.g., the road as sidewalk or
terrain, and produces some false predictions on some so-
phisticated classes, e.g., traffic sign. Our proposed method
is capable of outputting high confidence predictions com-
pared to the previous work.
Performance curve of adaptation. Figure 4 plots the
performance curves to show the effectiveness of SRC loss
when adapting from GTAV [34] to Cityscapes [9]. Previous
methods, e.g., Mean Teacher [8], neglect the context knowl-
edge shared by different domains and perform a rough dis-
tribution matching, resulting in training instability and early
performance degradation. Instead, we effectively ease these
negative impacts and decrease the uncertainty of segmenta-
tion model, by introducing the SRC loss.

0 25 50 75 100 125
i-th 1000 iterations

30

35

40

m
Io

U
 o

n 
va

l s
et

 (%
)

Mean Teacher
Mean Teacher+SRC Loss

Figure 4. Comparison on adapting from GTA5 [34] dataset to
Cityscapes [9] dataset. The blue line corresponds to the conven-
tional consistency regularization strategy [8]. The orange line in-
dicates the consistency-based adaptation with our SRC loss. Our
method can ease the issue of training instability and early perfor-
mance drop.

5. Conclusion

In this paper, we proposed a novel context-aware do-
main mixup (CAMix) framework for domain adaptive se-
mantic segmentation. We present a contextual mask gen-
eration (CMG) strategy, which is critical for guiding the
whole pipeline on three different levels, i.e., input level,
output level and significance mask level. Our approach
can explicitly explore and transfer the shared context de-
pendency across domains, thus narrowing down the do-
main gap. We also introduce a significance-reweighted con-
sistency loss (SRC) to penalize the inconsistency between
the mixed student prediction and the mixed teacher pre-
diction, which effectively eases the adverse impacts of the
adaptation, e.g., training instability and early performance
degradation. The extensive experiments with ablation stud-
ies demonstrate that our approach soundly outperforms the
state-of-the-art methods in domain adaptive semantic seg-
mentation.
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