166 research outputs found

    Anisotropic Generalized Bayesian Coherent Point Drift for Point Set Registration

    Get PDF
    Registration is highly demanded in many real-world scenarios such as robotics and automation. Registration is challenging partly due to the fact that the acquired data is usually noisy and has many outliers. In addition, in many practical applications, one point set (PS) usually only covers a partial region of the other PS. Thus, most existing registration algorithms cannot guarantee theoretical convergence. This article presents a novel, robust, and accurate three-dimensional (3D) rigid point set registration (PSR) method, which is achieved by generalizing the state-of-the-art (SOTA) Bayesian coherent point drift (BCPD) theory to the scenario that high-dimensional point sets (PSs) are aligned and the anisotropic positional noise is considered. The high-dimensional point sets typically consist of the positional vectors and normal vectors. On one hand, with the normal vectors, the proposed method is more robust to noise and outliers, and the point correspondences can be found more accurately. On the other hand, incorporating the registration into the BCPD framework will guarantee the algorithm's theoretical convergence. Our contributions in this article are three folds. First, the problem of rigidly aligning two general PSs with normal vectors is incorporated into a variational Bayesian inference framework, which is solved by generalizing the BCPD approach while the anisotropic positional noise is considered. Second, the updated parameters during the algorithm's iterations are given in closed-form or with iterative solutions. Third, extensive experiments have been done to validate the proposed approach and its significant improvements over the BCPD

    Disruption of Functional Brain Networks Underlies the Handwriting Deficit in Children With Developmental Dyslexia

    Get PDF
    Developmental dyslexia (DD) is a neurological-based learning disorder that affects 5-17.5% of children. Handwriting difficulty is a prevailing symptom of dyslexia, but its neural mechanisms remain elusive. Using functional magnetic resonance imaging (fMRI), this study examined functional brain networks associated with handwriting in a copying task in Chinese children with DD (n = 17) and age-matched children (n = 36). We found that dyslexics showed reduced network connectivity between the sensory-motor network (SMN) and the visual network (VN), and between the default mode network (DMN) and the ventral attention network (VAN) during handwriting, but not during drawing geometric figures. Moreover, the connectivity strength of the networks showing group differences was correlated with handwriting speed, reading and working memory, suggesting that the handwriting deficit in DD is linked with disruption of a large-scale brain network supporting motoric, linguistic and executive control processes. Taken together, this study demonstrates the alternations of functional brain networks that underly the handwriting deficit in Chinese dyslexia, providing a new clue for the neural basis of DD

    Multiband superconductivity and a deep gap minimum evidenced by specific heat in KCa2_2(Fe1x_{1-x}Nix_x)4_4As4_4F2_2

    Full text link
    Specific heat can explore low-energy quasiparticle excitations of superconductors, so it is a powerful tool for bulk measurement on the superconducting gap structure and pairing symmetry. Here, we report an in-depth investigation on the specific heat of the multiband superconductors KCa2_2(Fe1x_{1-x}Nix_x)4_4As4_4F2_2 (xx = 0, 0.05, 0.13) single crystals and the overdoped non-superconducting one with xx = 0.17. For the samples with xx = 0 and xx = 0.05, the magnetic field induced specific heat coefficient Δγ(H)\Delta\gamma(H) in the low temperature limit increases rapidly below 2 T, then it rises slowly above 2 T. Using the non-superconducting sample with xx = 0.17 as a reference, and applying a mixed model that combines Debye and Einstein modes, the specific heat of phonon background for various superconducting samples can be fitted and the detailed information of the electronic specific heat is obtained. Through comparative analyses, it is found that the energy gap structure including two ss-wave gaps and an extended ss-wave gap with large anisotropy can reasonably describe the electronic specific heat data. According to these results, we suggest that at least one anisotropic superconducting gap with a deep gap minimum should exist in this multiband system. With the doping of Ni, the TcT_c of the sample decreases along with the decrease of the large ss-wave gap, but the extended ss-wave gap increases due to the enlarged electron pockets via adding more electrons. Despite these changes, the general properties of the gap structure remain unchanged versus doping Ni. In addition, the calculation of condensation energy of the parent and doped samples shows the rough consistency with the correlation of U0TcnU_0 \propto {T_c}^n with nn = 3-4, which is beyond the understanding of the BCS theory

    Untargeted metabolomics of saliva in caries-active and caries-free children in the mixed dentition

    Get PDF
    ObjectiveTo compare the differences in salivary metabolites between caries-active and caries-free children in the mixed dentition, and explore their correlation with caries status.MethodsThe study involved 20 children (aged 8–9 years) in the mixed dentition, including 10 caries-active (aged 8.6 ± 0.49years) and 10 caries-free children(aged 8.5 ± 0.5years), with a male/female ratio of 1:1. The saliva samples were collected from all children. Metabolite extraction, LC-MS/MS-based untargeted metabolomics, qualitative and semi-quantitative analysis and bioinformatics analysis were performed to identify differential metabolites between the two sample groups. The differential metabolites identified were further analyzed in an attempt to find their correlations with caries status.ResultsIn the positive ion mode, a total of 1606 molecular features were detected in the samples of the two groups, 189 of which were differential metabolites when comparing the caries-active group with the caries-free group, including 104 up-regulated and 85 down-regulated metabolites. In the negative ion mode, a total of 532 molecular features were detected in the samples of two groups, 70 of which were differential metabolites when comparing the caries-active group with the caries-free group, including 37 up-regulated and 33 down-regulated metabolites. In the positive ion mode, two of the top 5 up-regulated differential metabolites were found in and annotated to specific metabolic pathways, whereas in the negative ion mode, only one of the top 5 up-regulated differential metabolites was found in and annotated to specific metabolic pathways. In both the positive and negative ion modes, the top 5 down-regulated differential metabolites were both annotated to the metabolic pathways. KEGG pathway enrichment analysis of differential metabolites showed that histamine and arachidonic acid identified in the positive ion mode, as well as succinate and L-histidine identified in the negative ion mode were enriched in the top 3 significantly altered pathways.ConclusionThe enriched differential metabolites including histamine, L-histidine and succinate were correlated with the presence of dental caries, but their role in the caries process needs to be further investigated

    The driving factors of spatial differences on the whole life cycle carbon emissions of the construction industry: from the analysis perspective of total factor productivity

    Get PDF
    The energy saving and emissions reduction of the construction industry are crucial for China to achieve the “carbon peaking and carbon neutrality” goals. In order to promote the green development of the life cycle of the construction industry and improve the efficiency of emissions reduction. This paper examines the spatial-temporal distribution of life cycle carbon emissions in China’s construction industry (LCCECI) from 2004 to 2018. It uses the SBM-Malmquist total factor productivity (TFP) index to measure technological progress and establishes the spatial econometric model based on the STIRPAT model. The study investigates the driving factors of the LCCECI at the provincial and regional levels, aiming to provide suggestions for low-carbon development in the construction industry. The research results are as follows. ① The growth in the SBM-Malmquist TFP index of the construction industry distinctly curbs the LCCECI. ② Total population and urbanization level are not the primary driving factors for the LCCECI. The growth of per capita GDP significantly induces the LCCECI, while concurrently exhibiting a notable inhibitory effect on the LCCECI of neighboring regions. ③ The improvement of the SBM-Malmquist TFP index is conducive to the reduction of the LCCECI in the three major regions. The per capita GDP has the largest positive driving effect of the LCCECI in the eastern region, and the urbanization level the urbanization rate only significantly inhibits the growth of the LCCECI in the central region

    Screening for inborn errors of metabolism in high-risk children: a 3-year pilot study in Zhejiang Province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tandem mass spectrometry (MS/MS) has been available in China for 8 years. This technique makes it possible to screen for a wide range of previously unscreened inborn errors of metabolism (IEM) using a single test. This 3-year pilot study investigated the screening, diagnosis, treatment and outcomes of IEM in symptomatic infants and children.</p> <p>Methods</p> <p>All children encountered in the Newborn Screening Center of Zhejiang Province during a 3-year period with symptoms suspicious for IEM were screened for metabolic diseases. Dried blood spots were collected and analyzed by tandem mass spectrometry. The diagnoses were further confirmed by clinical symptoms and biochemical analysis. Neonatal intrahepatic cholestasis caused by citrin deficiency, ornithine transcarbamylase deficiency and primary carnitine deficiency were confirmed by DNA analysis.</p> <p>Results</p> <p>A total of 11,060 symptomatic patients (6,720 boys, 4,340 girls) with a median age of 28.8 months (range: 0.04-168.2 months) were screened. Among these, 62 were diagnosed with IEM, with a detection rate of 0.56%. Thirty-five were males and 27 females and the median age was 3.55 months (range 0.07-143.9 months). Of the 62 patients, 27 (43.5%) had aminoacidemias, 26 (41.9%) had organic acidemias and nine (14.5%) had fatty acid oxidation disorders.</p> <p>Conclusions</p> <p>Because most symptomatic patients are diagnosed at an older age, mental retardation and motor delay are difficult to reverse. Additionally, poor medication compliance reduces the efficacy of treatment. More extensive newborn screening is thus imperative for ensuring early diagnosis and enhancing the treatment efficacy of IEM.</p

    Multiplexed Monitoring of Neurochemicals via Electrografting- Enabled Site-Selective Functionalization of Aptamers on Field-Effect Transistors

    Get PDF
    Neurochemical corelease has received much attention in understanding brain activity and cognition. Despite many attempts, the multiplexed monitoring of coreleased neurochemicals with spatiotemporal precision and minimal crosstalk using existing methods remains challenging. Here, we report a soft neural probe for multiplexed neurochemical monitoring via the electrografting-assisted site-selective functionalization of aptamers on graphene field-effect transistors (G-FETs). The neural probes possess excellent flexibility, ultralight mass (28 mg), and a nearly cellular-scale dimension of 50 μm × 50 μm for each G-FET. As a demonstration, we show that G-FETs with electrochemically grafted molecular linkers (−COOH or −NH2) and specific aptamers can be used to monitor serotonin and dopamine with high sensitivity (limit of detection: 10 pM) and selectivity (dopamine sensor \u3e22-fold over norepinephrine; serotonin sensor \u3e17-fold over dopamine). In addition, we demonstrate the feasibility of the simultaneous monitoring of dopamine and serotonin in a single neural probe with minimal crosstalk and interferences in phosphate-buffered saline, artificial cerebrospinal fluid, and harvested mouse brain tissues. The stability studies show that multiplexed neural probes maintain the capability for simultaneously monitoring dopamine and serotonin with minimal crosstalk after incubating in rat cerebrospinal fluid for 96 h, although a reduced sensor response at high concentrations is observed. Ex vivo studies in harvested mice brains suggest potential applications in monitoring the evoked release of dopamine and serotonin. The developed multiplexed detection methodology can also be adapted for monitoring other neurochemicals, such as metabolites and neuropeptides, by simply replacing the aptamers functionalized on the G-FETs
    corecore