39 research outputs found

    Antioxidant activities of seed extracts from Dalbergia odorifera T. Chen

    Get PDF
    The heartwood or root of Dalbergia odorifera T. Chen is an important traditional Chinese medicine. Antioxidant activities of seed extracts from D. odorifera T. Chen were first investigated in this study. Ethanolic extracts were suspended in distilled water and partitioned successively with petroleum ether, ethyl acetate, n-butanol (n-BuOH) and water, yielding four extracts named as PE, EE, BE and WE, respectively. The EE exhibited the highest total phenolic, total flavonoid, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, linoleic acid and lard peroxidation inhibition, but lowest chelating ability. Liquid chromatography mass spectrometry (LC/MS) analysis of EE revealed that there was a predominant component with negative molecular ion [M-H]- at m/z 373.2, a fragment at m/z 343.2 and UV λmax at 263 and 297nm. The mechanisms of antioxidant activities of seed extracts were exploited. Positive linear correlations were observed between reducing power and DPPH radical scavenging activity (R2 = 0.836), and linoleic acid peroxidation inhibition (R2 = 0.920), respectively. Similarly, high positive linear correlations of the total phenolic and total flavonoid with DPPH radical scavenging activity, reducing power and linoleic acid peroxidation inhibition were observed. This study therefore suggests that seeds of D. odorifera T. Chen have the potential to be used as natural antioxidants in food or pharmaceutical industry.Key words: Antioxidant activity, Dalbergia odorifera T. Chen, seed, liquid chromatography mass spectrometry (LC/MS)

    Rapid assembly of customized TALENs into multiple

    Get PDF
    Transcriptional activator-like effector nucleases (TALENs) have become a powerful tool for genome editing. Here we present an efficient TALEN assembly approach in which TALENs are assembled by direct Golden Gate ligation into Gateway® Entry vectors from a repeat variable di-residue (RVD) plasmid array. We constructed TALEN pairs targeted to mouse Ddx3 subfamily genes, and demonstrated that our modified TALEN assembly approach efficiently generates accurate TALEN moieties that effectively introduce mutations into target genes. We generated "user friendly" TALEN Entry vectors containing TALEN expression cassettes with fluorescent reporter genes that can be efficiently transferred via Gateway (LR) recombination into different delivery systems. We demonstrated that the TALEN Entry vectors can be easily transferred to an adenoviral delivery system to expand application to cells that are difficult to transfect. Since TALENs work in pairs, we also generated a TALEN Entry vector set that combines a TALEN pair into one PiggyBac transposon-based destination vector. The approach described here can also be modified for construction of TALE transcriptional activators, repressors or other functional domains. © 2013 Zhang et al

    Efficient thick-film polymer solar cells with enhanced fill factors via increased fullerene loading

    No full text
    \u3cp\u3eDeveloping effective methods to make efficient bulk-heterojunction polymer solar cells at roll-to-roll relevant active layer thickness is of significant importance. We investigate the effect of fullerene content in polymer:fullerene blends on the fill factor (FF) and on the performance of thick-film solar cells for four different donor polymers PTB7-Th, PDPP-TPT, BDT-FBT-2T, and poly[5,5′-bis(2-butyloctyl)-(2,2′-bithiophene)-4,4′-dicarboxylate-alt-5,5′-2,2′-bithiophene] (PDCBT). At a few hundreds of nanometers thickness, increased FFs are observed in all cases and improved overall device performances are obtained except for PDCBT upon increasing fullerene content in blend films. This fullerene content effect was studied in more detail by electrical and morphological characterization. The results suggest enhanced electron mobility and suppressed bimolecular recombination upon increasing fullerene content in thick polymer:fullerene blend films, which are the result of larger fullerene aggregates and improved interconnectivity of the fullerene phases that provide continuous percolating pathways for electron transport in thick films. These findings are important because an effective and straightforward method that enables fabricating efficient thick-film polymer solar cells is desirable for large-scale manufacturing via roll-to-roll processing and for multijunction devices.\u3c/p\u3
    corecore