55 research outputs found

    Strongly lensed repeating Fast Radio Bursts as precision probes of the universe

    Get PDF
    Fast Radio bursts (FRBs), bright transients with millisecond durations at ∼\sim GHz and typical redshifts probably >0.8>0.8, are likely to be gravitationally lensed by intervening galaxies. Since the time delay between images of strongly lensed FRB can be measured to extremely high precision because of the large ratio ∼109\sim10^9 between the typical galaxy-lensing delay time ∼O\sim\mathcal{O}(10 days) and the width of bursts ∼O\sim\mathcal{O}(ms), we propose strongly lensed FRBs as precision probes of the universe. We show that, within the flat Λ\LambdaCDM model, the Hubble constant H0H_0 can be constrained with a ∼0.91%\sim0.91\% uncertainty from 10 such systems probably observed with the Square Kilometer Array (SKA) in << 30 years. More importantly, the cosmic curvature can be model-independently constrained to a precision of ∼0.076\sim0.076. This constraint can directly test the validity of the cosmological principle and break the intractable degeneracy between the cosmic curvature and dark energy.Comment: 8 pages, 6 figure

    Cosmology-independent Estimate of the Fraction of Baryon Mass in the IGM from Fast Radio Burst Observations

    Full text link
    The excessive dispersion measure (DM) of fast radio bursts (FRBs) has been proposed to be a powerful tool to study intergalactic medium (IGM) and to perform cosmography. One issue is that the fraction of baryons in the IGM, f IGM, is not properly constrained. Here, we propose a method of estimating f IGM using a putative sample of FRBs with the measurements of both DM and luminosity distance d L. The latter can be obtained if the FRB is associated with a distance indicator (e.g., a gamma-ray burst or a gravitational-wave event), or the redshift z of the FRB is measured and d L at the corresponding z is available from other distance indicators (e.g., SNe Ia) at the same redshift. As d L/DM essentially does not depend on cosmological parameters, our method can determine f IGM independent of cosmological parameters. We parameterize f IGM as a function of redshift and model the DM contribution from a host galaxy as a function of star formation rate. Assuming f IGM has a mild evolution with redshift with a functional form and by means of Monte Carlo simulations, we show that an unbiased and cosmology-independent estimate of the present value of f IGM with a ~12% uncertainty can be obtained with 50 joint measurements of d L and DM. In addition, such a method can also lead to a measurement of the mean value of DM contributed from the local host galaxy

    LucidDraw: Efficiently visualizing complex biochemical networks within MATLAB

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biochemical networks play an essential role in systems biology. Rapidly growing network data and versatile research activities call for convenient visualization tools to aid intuitively perceiving abstract structures of networks and gaining insights into the functional implications of networks. There are various kinds of network visualization software, but they are usually not adequate for visual analysis of complex biological networks mainly because of the two reasons: 1) most existing drawing methods suitable for biochemical networks have high computation loads and can hardly achieve near real-time visualization; 2) available network visualization tools are designed for working in certain network modeling platforms, so they are not convenient for general analyses due to lack of broader range of readily accessible numerical utilities.</p> <p>Results</p> <p>We present LucidDraw as a visual analysis tool, which features (a) speed: typical biological networks with several hundreds of nodes can be drawn in a few seconds through a new layout algorithm; (b) ease of use: working within MATLAB makes it convenient to manipulate and analyze the network data using a broad spectrum of sophisticated numerical functions; (c) flexibility: layout styles and incorporation of other available information about functional modules can be controlled by users with little effort, and the output drawings are interactively modifiable.</p> <p>Conclusions</p> <p>Equipped with a new grid layout algorithm proposed here, LucidDraw serves as an auxiliary network analysis tool capable of visualizing complex biological networks in near real-time with controllable layout styles and drawing details. The framework of the algorithm enables easy incorporation of extra biological information, if available, to influence the output layouts with predefined node grouping features.</p

    Skin expression of IL-23 drives the development of psoriasis and psoriatic arthritis in mice

    Get PDF
    Psoriasis (PS) is a chronic skin inflammation. Up to 30% of the patients with PS develop psoriatic arthritis (PsA), a condition characterized by inflammatory arthritis that affects joints or entheses. Although there is mounting evidence for a critical role of interleukin-23 (IL-23) signaling in the pathogenesis of both PS and PsA, it remains unclear whether IL-23-induced skin inflammation drives joint disease. Here, we show that mice expressing increased levels of IL-23 in the skin (K23 mice) develop a PS-like disease that is characterized by acanthosis, parakeratosis, hyperkeratosis, and inflammatory infiltrates in the dermis. Skin disease preceded development of PsA, including enthesitis, dactylitis, and bone destruction. The development of enthesitis and dactylitis was not due to high circulating levels of IL-23, as transgenic animals and controls had similar levels of this cytokine in circulation. IL-22, a downstream cytokine of IL-23, was highly increased in the serum of K23 mice. Although IL-22 deficiency did not affect skin disease development, IL-22 deficiency aggravated the PsA-like disease in K23 mice. Our results demonstrate a central role for skin expressed IL-23 in the initiation of PS and on pathogenic processes leading to PsA.Fil: Chen, Lili. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Deshpande, Madhura. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Grisotto, Marcos. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Smaldini, Paola Lorena. Icahn School of Medicine at Mount Sinai; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Garcia, Roberto. Hospital for Special Surgery; Estados UnidosFil: He, Zhengxiang. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Gulko, Percio. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Lira, Sergio A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Furtado, Glaucia C.. Icahn School of Medicine at Mount Sinai; Estados Unido

    Limits on the Weak Equivalence Principle and Photon Mass with FRB 121102 Subpulses

    Full text link
    Fast radio bursts (FRBs) are short-duration (~millisecond) radio transients with cosmological origin. The simple sharp features of the FRB signal have been utilized to probe two fundamental laws of physics, namely, testing Einstein\u27s weak equivalence principle and constraining the rest mass of the photon. Recently, Hessels et al. found that after correcting for dispersive delay, some of the bursts in FRB 121102 have complex time–frequency structures that include subpulses with a time–frequency downward drifting property. Using the delay time between subpulses in FRB 121102, here we show that the parameterized post-Newtonian parameter γ is the same for photons with different energies to the level of ... (see full abstract in article)
    • …
    corecore