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ARTICLE

Strongly lensed repeating fast radio bursts as
precision probes of the universe
Zheng-Xiang Li1, He Gao1, Xu-Heng Ding 2, Guo-Jian Wang 1 & Bing Zhang3,4,5

Fast radio bursts (FRBs), bright transients with millisecond durations at ∼GHz and typical

redshifts probably >0.8, are likely to be gravitationally lensed by intervening galaxies. Since

the time delay between images of strongly lensed FRB can be measured to extremely high

precision because of the large ratio ∼109 between the typical galaxy-lensing delay time � O
(10 days) and the width of bursts � O (ms), we propose strongly lensed FRBs as precision

probes of the universe. We show that, within the flat ΛCDM model, the Hubble constant H0

can be constrained with a ~0.91% uncertainty from 10 such systems probably observed with

the square kilometer array (SKA) in <30 years. More importantly, the cosmic curvature can

be model independently constrained to a precision of ∼0.076. This constraint can directly

test the validity of the cosmological principle and break the intractable degeneracy between

the cosmic curvature and dark energy.
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Fast radio bursts (FRBs) are bright transients with milli-
second durations at ~GHz frequencies, whose physical ori-
gin is subject to intense debate1,2. Most FRBs are located at

high galactic latitudes and have anomalously large dispersion
measures (DMs). Attributing DM to an intergalactic medium
origin, the corresponding redshifts z are typically >0.8. Up to
now, more than 30 FRBs have been published3. One of them, FRB
121102, shows a repeating feature4. The repetition of FRB 121102
enables high-time-resolution radio interferometric observations
to directly image the bursts, leading to the localization of the
source in a star-forming galaxy at z= 0.19273 with sub-arcsecond
accuracy5. The cosmological origin of the repeating FRBs is thus
confirmed. For other FRBs, although no well-established evidence
has been published, they are also strongly suggested to be of a
cosmological origin, due to their all-sky distribution and their
anomalously large values of DMs2. It is possible that all FRBs
might be repeating, and only the brightest ones are observable.
On the other hand, it is also possible that repeating and non-
repeating FRBs may originate from different progenitors6.
Interestingly, these transient radio sources are likely lensed from
small to large scales, for example, through plasma lensing in their
host galaxies7, gravitational microlensing by an isolated and
extragalactic stellar-mass compact object8,9, and strong gravita-
tional lensing by an intervening galaxy10,11. Here we only focus
on the possibility of strongly gravitationally lensed FRBs and their
applications to conduct cosmography. Therefore, in our following
analysis, “lensed FRBs” only refers to the case that an FRB is
strongly gravitationally lensed by an intervening galaxy. For a lens
galaxy with the mass of dark matter halo � 1012M�h

�1 (h is the
Hubble constant in units of 100 km s−1 Mpc−1), the typical time
delay and angular separation between different images of lensed
FRBs are � O (10 days) and of the order arcseconds, respectively.
These multiple images of lensed FRBs cannot be resolved by radio
survey telescopes since their typical angular resolution is of the
order of 10 arcmin. Therefore, a lensed non-repeating FRB source
may be observed as a repeating FRB source, showing two to four
bursts with respective time delays of several days. The DM value
and the scatter broadening of each burst could be slightly or even
significantly different from each other depending on the plasma
properties along different lines of sight (LOS). It is therefore
difficult to identify the lensed non-repeating FRBs. However, if a
repeating FRB is strongly lensed by an intervening galaxy, a series
of image multiplets from the same source will exhibit a fixed
pattern in their mutual time delays, appearing over and over
again as we detect the repeating bursts11. Observations of FRB
121102 in radio and its counterpart in optical indicate that this
repeater is not lensed (no intervening lens galaxy or multiple
images of the host are observed) and the intrinsic repetition
happens randomly. Therefore, a fixed temporal pattern associated
with a future repeating FRB source would be a smoking-gun
signature that it is strongly lensed. Each burst emitted from the
source would travel through different paths to reach to the
observer with time delays. If these lensed bursts can be imaged,
they should appear as different images in the sky. Their spectra
and lightcurves might be slightly different from each other
because of different paths they traveled through, so that the
morphology of bursts may not be the main feature to identify
lensed FRBs. For a series of randomly generated repeating bursts,
the intrinsic time difference between two adjacent bursts should
be the same for all lensed (two or four) images. Therefore, a fixed
time pattern of all the repeating bursts is the most robust evidence
for identifying a lensed FRB system. Once a survey telescope
registered a fixed time pattern repeating two or four times with a
delay � O (10 days), one could then employ more powerful radio
telescopes such as very large array (VLA) or the future SKA to
observe more repetitions and resolve multiple images of the

bursts. Meanwhile, one could observe the source using optical
and near-infrared (IR) telescopes to identify an intervening lens
galaxy near the LOS as well as the multiple images of the host
galaxy (Einstein ring or arcs) with angular separations of the
order of arcseconds. If the image locations in both radio and
optical (or near-IR) bands match each other, in combination with
the fixed time-delay repetition pattern mentioned above, a lensed
FRB system can be confirmed and the host and the lens galaxies
identified.

Current FRB observations suggest a sufficiently high all-sky
FRB rate of ~103–104 per day2,12. Upcoming surveys such as the
Swinburne University of Technology’s digital backend for the
Molonglo Observatory Synthesis Telescope array (UTMOST)13,
the Hydrogen Intensity and Real-time Analysis eXperiment
(HIRAX)14, the Canadian Hydrogen Intensity Mapping Experi-
ment (CHIME)15, and especially the SKA project16 will map a
considerable fraction of the sky with a detection rate of FRBs of
>100 per day17. For an FRB happening at z > 1, the probability for
it to be strongly lensed is ~a few ×10−4 18. As a result, future radio
surveys, such as SKA, will have the ability to discover
>10 strongly lensed FRBs per year9–11. According to the current
data, at least 3% (1/30) observed FRBs are repeating FRBs. With a
conservative estimate, ~10 strongly lensed repeating FRBs are
expected to be accumulated within <30 years with the operation
of SKA.

Owing to the small ratio (~10−9) between the short duration of
each burst � O (ms) and the typical galaxy-lensing delay time
� O (10 days), time delays between images of these systems can
be measured to great precision. Moreover, due to overwhelmingly
accurate localizations of lensed FRB images from deep VLA
observations (or future SKA observations) and clean high-
resolution images of the host galaxy without a dazzling active
galactic nucleus (AGN), the mass profile of the lens can be also
modeled with high precision. Therefore, we propose that lensed
FRB systems can be a powerful probe for studying cosmology.
Lensing theory predicts that the difference in arrival time between
image A and image B, that is, the “time delay” ΔτAB, is expressed
as

ΔτAB ¼ ΔΦAB

c
DΔt ¼

ΔΦAB

c
� ð1þ zlÞ

DA
l D

A
s

DA
ls

; ð1Þ

where ΔΦAB is the Fermat potential difference between the two
image positions, c is the speed of light, DΔt the so-called “time-
delay distance” is just a multiplicative combination of the three
angular diameter distances (DA

l : from the observer to the lens, DA
s :

from the observer to the source, DA
ls : from the lens to the source),

and zl is the redshift of lens. This quantity has the dimension
of distance and is inversely proportional to the Hubble constant,
H0, which sets the age and length scale for the present
universe and is one of the most important parameters for cos-
mology. Therefore, the time-delay distance DΔt is primarily sen-
sitive to H0 and that measured from lensed quasar systems has
been used to measure the Hubble constant. Moreover, the rela-
tions among these three angular diameter distances are highly
dependent on the geometric properties of the space. We
introduce dimensionless comoving angular diameter distances,
dl � dð0; zlÞ � ð1þ zlÞH0D

A
l =c, ds � dð0; zsÞ � ð1þ zsÞH0D

A
s =c,

and dls � dðzl; zsÞ � ð1þ zsÞH0D
A
ls=c (zs is the redshift of source),

to illustrate this. For example, qualitatively and intuitively, ds is
greater, equal to, or smaller than dl+ dls if the space is open, flat,
or closed, respectively (see Methods section for quantitative
details). Therefore, in combination with distances from type Ia
supernova (SNe Ia) observations, the time-delay distance can be
used to directly measure the spatial curvature Ωk in a cosmolo-
gical model-independent manner. Decades of observations have
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ushered in the era of precision cosmology. The flat Λ CDMmodel
is found to be consistent with essentially all the conservational
constraints. Yet, recent direct local distance ladder measurements
of H0 have reached a 2.4% precise measurement: H0= 73.24 ±
1.74 km s−1 Mpc−1 19, which greatly increased the tension with
respect to the latest Planck-inferred value (H0= 67.27 ± 0.66 km s
−1 Mpc−1)20 to 3.4σ. Lensed FRBs, as a powerful probe and
completely independent dataset based on a different physical
phenomenon, would provide complementary information and
therefore are of vital importance to clarify this issue.

Results
In order to investigate the constraining power of lensed FRBs on
some fundamental cosmological parameters, we perform a series
of simulations with the proper inputs in the following three
aspects (see Methods section for details): (i) the redshift dis-
tribution of incoming FRBs; (ii) for a source at redshift zs, the lens
redshift zl to produce the maximal differential lensing probability;
(iii) the uncertainty of each factor contributing to the accuracy of
time-delay distance measurement. Since the time-delay distance is
very sensitive to the Hubble constant, we estimate the con-
straining power on H0 by simulating 10 lensed FRBs in the flat
ΛCDM with the matter density being fixed as Ωm= 0.3. With the
assumed fiducial model (flat ΛCDM model with H0= 70 km s−1

Mpc−1 and Ωm= 0.3) and three factors outlined above, we per-
formed 10,000 simulations, each containing 10 lensed FRB sys-
tems and obtained the probability distribution of the estimated
H0. Two different redshift distributions, Nconst(z) and NSFH(z), are
considered (see Methods section for details). They do not lead to
significant differences in the constraint on H0 and consistently
give stringent constraints with a ~0.91% uncertainty. Results are
shown in Fig. 1. It is suggested that compared to the currently
available results, ~10 lensed FRBs will have obvious pre-
dominance in precision in constraining H0. For instance, it
improves by a factor ~5 with respect to the current state-of-the-
art case of lensed quasars21.

In addition to constraining the Hubble constant within the flat
ΛCDMmodel, one can also give a model-independent estimate of

the cosmic curvature using lensed FRBs. As one of the most
important parameters in cosmology, a precise estimation of the
spatial curvature is essential for justifying whether the
Friedmann–Lemaître–Robertson–Walker (FLRW) metric could
exactly characterize the background of the universe22, and for
studying some fundamental issues such as cosmic evolution and
dark energy property23. In the FLRW metric, it was found that
distances along null geodesics satisfy a specific sum rule24, which
has been proposed to test the validity of the homogeneous and
isotropic background25. More recently, with an upgraded distance
sum rule, time-delay distance measurements from lensed quasars
were proposed to test the FLRW metric and estimate the cosmic
curvature (see Methods section for details)26. Here in combina-
tion with ~4000 SNe Ia observations from the near-future dark
energy survey, we examined the ability of the lensed FRBs for
constraining the cosmic curvature. We found that the constraints
from lensed FRBs with the two considered redshift distributions
are very similar and the spatial curvature parameter can be
constrained to a precision of ~0.076. Results from lensed FRBs
and other currently available model-independent methods are
presented in Fig. 2. Again, in this model-independent domain,
lensed FRBs are the most promising tools for constraining the
cosmic curvature. Moreover, the precision of the results from
lensed FRBs potentially approaches that inferred from the Planck
satellite observations within the standard ΛCDM model, where
Ωk=−0.004 ± 0.015 was obtained20.

Discussion
Here we propose strongly lensed repeating FRBs as a precision
cosmological probe. Representatively, we investigate the con-
straining power of lensed FRB systems observed in the near future
on two of the most important cosmological parameters, Hubble
constant H0 and cosmic curvature Ωk. For H0, we obtained that it
can be constrained with a relative ~0.91% uncertainty from 10
lensed FRB systems. This promising constraint with sub-percent
uncertainty level suggests that lensed FRBs, as a powerful probe
and completely independent dataset based on a different physical
phenomenon, would provide complementary information and
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therefore are of vital importance to clarify the tension between the
latest Planck-inferred H0 and the one from direct local distance
ladder observations. For Ωk, it can be constrained to a precision
of ~0.076 from 10 lensed FRB systems in a model-independent
way on the basis of the distance sum rule. This result is the most
precise one in the field of model-independent estimations for the
cosmic curvature and, on the one hand, will provide a stringent
direct test for the validity of the FLRWmetric. On the other hand,
this constraint with considerable precision is helpful to break the
degeneracy between the cosmic curvature and dark energy, and
thus is conducive for investigating the nature of dark sectors of
the universe. Moreover, having model-dependent and direct
measurements of the same quantity is of utmost importance. In
the absence of significant systematic errors, if the standard cos-
mological model is the correct one, indirect (model-dependent)
and direct (model-independent) constraints on this parameter
should be consistent. If they were significantly inconsistent, this
would provide evidence of physics beyond the standard model or
unaccounted systematic errors. Strongly lensed FRBs can help to
reach such a goal.

Methods
In order to examine the potential of using lensed FRBs as cosmological probes,
three related aspects need to be addressed: (i) the redshift distribution of the
incoming FRBs; (ii) for a source at redshift zs, the lens redshift zl to produce the
maximal differential lensing probability; (iii) the uncertainties of different factors
contributing to the accuracy of time-delay distance measurements. We discuss
these three items one by one. In addition, we also introduce the distance sum rule
for estimating the cosmic curvature.

FRB redshift distribution. We consider two possible scenarios suggested in ref 9.
The first one invokes a constant comoving number density, so that the number of
FRBs in a shell of width dz at redshift z is proportional to the comoving volume of
the shell dV(z)27. By introducing a Gaussian cutoff at some redshift zcut to
represent an instrumental signal-to-noise threshold, the constant-density dis-
tribution function Nconst(z) is expressed as

NconstðzÞ ¼ N const
χ2ðzÞ

HðzÞð1þ zÞ e
�DL2 ðzÞ= 2DL2 ðzcutÞ½ �; ð2Þ

where χ(z) is the comoving distance and DL is the luminosity distance. N const is a
normalization factor to ensure that the integration of Nconst(z) is unity and H(z) is
the Hubble parameter at redshift z. The second distribution requires that FRBs
follow the star-formation history (SFH)13, so that

NSFHðzÞ ¼ N SFH
_ρ�ðzÞχ2ðzÞ
HðzÞð1þ zÞ e

�DL2 ðzÞ= 2DL2 ðzcutÞ½ �; ð3Þ

where N SFH is the normalization factor and is chosen to have NSFH(z) integrated to
unity. The density of SFH is parametrized as

_ρ�ðzÞ ¼ h
αþ βz

1þ ðz=γÞδ ; ð4Þ

with α= 0.017, β= 0.13, γ= 3.3, δ= 5.3, and h= 0.728,29. For redshifts of cur-
rently available FRBs, different from previous estimation using a simple relataion
between DM and z proposed by Ioka30, we re-estimate them with a more precise
DM–z relation given in ref 31. It is found that the inferred z values are system-
atically greater than previously estimated ones, which are typically >0.8 and with
several FRBs having z > 1 even after properly subtracting the DM contribution
from the FRB host. In this case, for these two FRB distribution functions, a cutoff
zcut= 1 is chosen to match redshifts of currently detected events. In our analysis,
Nconst and NSFH are employed to investigate whether cosmological implications
from lensed FRBs are dependent on the assumed redshift distributions.

Lensing probability. According to the lensing theory32, the probability for a dis-
tant source at redshift zs lensed by an intervening dark matter halo is

P ¼
Z zs

0
dzl

dDp

dzl

Z 1

0
σðM; zlÞnðM; zlÞdM; ð5Þ

where dDp/dzl is the proper distance interval, σ(M, zl) is the lensing cross-section of
a dark matter halo with its mass and redshift being M and zl, respectively, n(M, zl)
dM is the proper number density of the deflectors with masses between M and M
+ dM. For a singular isothermal sphere (SIS) lens, the cross-section producing two

images with a flux ratio being smaller than a given threshold r is33

σð<rÞ ¼ 16π3
σv
c

� �4 r � 1
r þ 1

� �2 DA
l D

A
ls

DA
s

� �2

; ð6Þ

where σv is the velocity dispersion. Moreover, the comoving number density of
dark matter halos within the mass range (M, M+ dM) at redshift z is

nðM; zÞdM ¼ ρ0
M

f ðM; zÞdM; ð7Þ

where ρ0 is the present value of the mean mass density in the universe, and f(M, z)
dM is the Press–Schechter function34. For any FRB at redshift zs following the
distribution Nconst or NSFH, we determine the lens redshift zl by maximizing the
differential lensing probability, dP/dz. Assuming an SIS-like lens halo of mass
M ¼ 1012M�h

�1 (h=H0/100 km s−1 Mpc−1) and r ≤ 5, the function of the lens
redshift zl producing the maximal differential lensing probability with respect to
the source reshift zs was shown in Fig. 2 of ref 10. In our analysis, this function is
used to determine the lens redshift zl for any given source at redshift zs.

Uncertainty contribution. In order to estimate the time-delay distance from
individual lensing systems for an accurate cosmography, as suggested in Eq. (1), it
has been recognized that three key analysis steps should be carried out35,36: that is,
(1) time-delay measurement, (2) lens galaxy mass modeling, which can be used to
predict the Fermat potential differences, and (3) the line of sight (LOS) environ-
ment modeling, which is adopted to account for the weak lensing effects due to
massive structures in the lens plane and along the LOS.

The differences in the arrival time between images can be precisely measured
for a lensed FRB system since the short duration of each burst � O (ms) is much
smaller (~10−9) than the typical galaxy-lensing time delay � O (10 days).
Therefore, errors of time-delay measurements for lensed FRBs are negligible.
Compared to the best 3% uncertainty of time-delay measurements in traditional
lensed quasars21,37, the precision for the case of FRBs is greatly improved.

For the lens galaxy mass modeling, it requires a high-resolution, good-quality
image of the lensed host galaxy and accurate localizations of the lensed FRB images.
The advantage of a lensed FRB system is that it does not have a bright AGN, so that
clean host images can be obtained before or after FRB. In practice, once a strongly
lensed repeating FRB is identified by a large field-of-view radio survey program
(e.g., CHIME), images of the lensed FRBs can be accurately localized from the deep
follow-up observations with VLBI or SKA. High-quality optical images of the host
galaxy can be obtained from follow-up facilities such as HST or the near-future
James Webb Space Telescope (JWST), which can be used to study the mass
distribution of the deflector with lens modeling techniques.

In order to quantitatively estimate the uncertainty level of lens modeling from
integrated lensed host image without a dazzling AGN, we carry out a series of
simulations. First, we generate mock-lensed images following the industrial
standard as introduced in refs 21,38. Specifically, in our simulation, the Sérsic
profile39 is used to describe light profiles of the source (background) and the lens
(foreground) galaxies. For lens mass profile, it is assumed to follow the power-law
mass distribution of elliptical galaxies. Images are supposed to be observed by HST
using the Wide Field Camera 3 (WFC3) IR channel in the F160W band. The
settings related to the quality of mock images, such as the exposure time and
drizzling process, are chosen based on the H0LiCOW program. Even though, in the
simulation, FRB is non-luminous in optical/IR band and thus does not contribute
any light to the surface brightness of images, locations of FRB images are
considered to calculate the difference of the Fermat potential between each point
source in the image plane. The final simulated image is shown in Fig. 3 (left panel).
We apply a Monte Carlo Markov Chain (MCMC) approach to find the best-fit
parameters (and parameter uncertainty) for the light and mass profiles of the
source and lens galaxies, by fitting the mock image with Glafic40. The best-fit and
the residual maps are shown in the middle and the right panel of Fig. 3,
respectively. We then calculate the differences of Fermat potentials between each
pair of images based on the fitting results and plot their contours together with the
slope of the power-law lens mass profile and the Einstein radius Rein (see Fig. 4).
There appears to be an obvious degeneracy between the slope of the power-law
mass profile γ and the Fermat potential differences (ΔΦBA, ΔΦCA, and ΔΦDA),
which is understandable since the latter are derived from the fitting results and
theoretically the mass slope γ determines the lens mass distribution and thus
determines the Fermat potential distribution (see Eq. (38) in ref. 41). Additional
observational information, such as stellar velocity dispersion of the lens galaxy, can
be possibly collected for providing complementary constraints on γ and thus are
helpful for reducing uncertainties of Fermat potential differences. More
importantly, as suggested in Fig. 4, the uncertainty of Fermat potential difference
between two point sources is about 1%. In time-delay cosmography, the concerned
parameters, such as H0 and Ωk, are inferred based on the combination of time-
delay and Fermat potential difference between each pair of images. For a quadruply
lensed system, we found that the uncertainty from lens modeling on cosmological
parameters (H0 and Ωk) inference is 0.8%. Here we choose a power-law model to fit
the lens mass profile. In the literature, it has been noted that adopting the power-
law mass distribution as a specific prior might lead to a potential bias due to mass-
sheet degeneracy42–44. However, it also has been argued that such a bias could be
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Fig. 3 Left: Simulation results based on HST, WFC3/F160w with image drizzled to 0.08′′. Middle: Best-fit image. Right: Residual map
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reduced by carefully taking into account kinematic constraints and additional
sources of systematic uncertainty44. We want to point out here that this 0.8%
uncertainty level is valid when fitting the lens with a correct parameterized model
(i.e., we generate the mock image with power-law lens mass profile and fit the
image also with a power-law model). Incorrectness of the lens model would lead to
potential bias in the inference of H0, where greater deviation of the models leading
to more significant bias. For instance, when we use the “Jaffe” model45,46 to fit the
mock lensing system shown in the left panel of Fig. 3, where a power-law profile is
considered, we even find 6–10% bias in the inference of H0. In practice, fortunately,
high-quality optical/IR image of the source-lens system could help us to avoid
choosing obviously wrong models. To briefly demonstrate this, we use the power-
law profile to simulate the lens arc but use the “Jaffe” mass model (i.e., a wrong
model) to fit the mock arc. We find that when the exposure time is longer than
5000 s, the χ2 map for the “Jaffe” model starts to be prominent (see Fig. 5) and the
reduced χ2 values are much larger than the power-law ones (see Fig. 6). This simple
test demonstrates that the performance of different lens models could be
distinguished when the quality of observed images is high enough (e.g., the
exposure time is longer than 5000 s with the HST). For current available systems

studied by the H0LiCOW program, the typical exposure time with the HST is ~104

s21. It is reasonable to expect that for each interesting lensed FRB system, extremely
high-quality images can be obtained from the HST or the near-future JWST to
distinguish among different lens models. Moreover, to mitigate such a potential
bias, different parameterized models are often adopted so that a joint-consistent
inference could be achieved. For example, in H0LiCOW IV47, besides the power-
law model, some other popular mass models were also adopted and resulted in
consistent inferences with the power-law ones. Overall, we conclude that for the
near-future lensed FRB systems of great interest, lens mass modeling would
contribute an uncertainty at a 0.8% level.

The last ingredient of uncertainty contribution for time-delay cosmography is
the one from LOS environment modeling. In this issue, a troublesome point is that
the external convergence (κext), resulting from the mass distributed outside of the
lens galaxy but close in projection to the lens system along the LOS, does not
change observable quantities of a lens system (i.e., image positions, flux ratios for
point sources, and the image shapes for extended sources) but affects the predicted
time delays by a factor of (1− κext) when we fit the lens and source models to
observations. Consequently, the true DΔt is related to the modeled one via
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Fig. 5 Results of the simulation tests by generating the lensed arc with a power-law mass distribution model but fitting with the Jaffe model
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DΔt ¼ Dmodel
Δt =ð1� κextÞ. For the lens HE 0435-122348, by using various

combinations of relevant informative weighing schemes for the galaxy counts49 and
ray tracing through the Millennium Simulation50, it was found that the most robust
estimate of κext has a median value κmed

ext ¼ 0:004 and a standard deviation σκ=
0.025, which corresponds to a 2.5% uncertainty on the time-delay distance51. More
recently, using deep r-band images from Subaru-Suprime-Cam and an inpainting
technique and Multi-Scale Entropy filtering algorithm, a weak gravitational lensing
measurement of the external convergence along the LOS to HE 0435-1223 was
achieved κext ¼ �0:012þ0:020

�0:013, which corresponds to ~1.6% uncertainty on the
time-delay distance52. Furthermore, the distribution of κext is robust to choices of
weights, apertures, and flux limits, up to an impact of 0.5% on the inferred time-
delay distance53. Here we assume that for lensed FRB systems, the LOS
environment contributes a systematic uncertainty at an averaged 2% level to the
inferred time-delay distance, expecting that every lensed FRB system is given
enough attention by the community so that we can combine auxiliary follow-up
data from facilities at different wavelengths and other available simulations with
convergence maps. It is still worth noting that larger LOS systematic uncertainty
could lead to larger error bars of cosmological parameters. In addition to the
distribution of mass external to the lens, the mass distribution in the outskirt of the
lens halo, in which there are little optical light traces, might lead to errors in the
inferred time-delay distance at the percent level and it was shown that weak
gravitational lensing and simulations may help to reduce these uncertainties54.

Distance sum rule. According to the cosmological principle, the space of the
universe is homogeneous and isotropic at large scales. In this case, the spacetime
can be described by the following FLRW metric:

ds2 ¼ �c2dt2 þ a2ðtÞ dr2

1� Kr2
þ r2dΩ2

� �
; ð8Þ

where a(t) is the scale factor and K is a constant characterizing the geometry of
three-dimensional space. In this metric, the dimensionless comoving angular
diameter distance of a source at redshift zs as observed at redshift zl is written as

dðzl; zsÞ ¼
1ffiffiffiffiffiffiffiffiffi
Ωkj jp SK

ffiffiffiffiffiffiffiffiffi
Ωkj j

p Z zs

zl

dx
EðxÞ

 !
; ð9Þ

where Ωk � �K=H2
0a

2
0 (a0= a(0) is the present value of the scale factor),

SK ðXÞ ¼
sinðXÞ Ωk<0;

X Ωk ¼ 0;

sinhðXÞ Ωk>0;

8><
>: ð10Þ

and E(z)≡H(z)/H0. In addition, we denote d(z)≡ d(0, z), dl≡ d(0, zl), ds≡ d(0, zs),
and dls≡ d(zl, zs), respectively. If the function of redshift z with respect to cosmic
time t is single-valued and d′(z) > 0, these three distances in the FLRW scenario
satisfy a simple sum rule24

dls ¼ ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩkd

2
l

q
� dl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩkd2s

q
: ð11Þ

Apparently, one has ds > dl+ dls, ds= dl+ dls and ds < dl+ dls for Ωk > 0, Ωk= 0
and Ωk < 0, respectively. Furthermore, in order to compare this sum rule with

observations, we can rewrite Eq. (11) as

dls
ds

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩkd

2
l

q
� dl
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩkd2s

q
: ð12Þ

Recently, the sum rule in this form was proposed to model-independent test,
the FLRW metric, by comparing the distance ratios dls/ds measured from strongly
lensed quasar systems with distances estimated from SNe Ia observations25. More
recently, we upgraded the distance sum rule and rewrote it as26

dls
dlds

¼ TðzlÞ � TðzsÞ; ð13Þ

where

TðzÞ ¼ 1
dðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΩkd2ðzÞ

p
; ð14Þ

to test the FLRW metric and estimate the cosmic curvature with time-delay
distance measurements.

Statistical analysis. In order to estimate constraining power from 10 lensed FRB
systems, we propagate the relative uncertainties of time delay (δΔτ= 0), Fermat
potential difference (δΔΦ= 0.8%), and LOS contamination (δκext= 2%) to the
relative uncertainty of DΔt, and then to the (relative) uncertainties of cosmological
parameters: ðδΔt; δΔΦ; δκextÞ � δDΔt � ðδH0; σΩk

Þ. Then, we performed Markov
Chain Monte Carlo (MCMC) minimization of the following χ2 objective function:

χ2 ¼
X10
i¼1

Dth
Δt;iðzd;i; zs;i; pÞ � Dsim

Δt;i

� �2
=σ2DΔt;i

; ð15Þ

where Dth
Δt is the theoretical time-delay distance in the assumed cosmological model

or from the combination of distance sum rule and SNe Ia observations, while Dsim
Δt

is the corresponding simulated distance with its uncertainty being
σDΔt;i

¼ δDΔt;iDΔt;i . p represents cosmological parameters (H0, Ωk) to be con-
strained and they are sampled in ranges H0 ∈ [0, 150], Ωk ∈ [−1, 1].

We perform 10,000 simulations each containing 10 lensed FRB systems. For
each dataset, we carry out the above-mentioned MCMC minimization to obtain the
best-fit value of corresponding parameters. Then, we plot the probability
distributions of the best-fit H0 and Ωk in Figs. 1, 2, respectively.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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