189 research outputs found

    Optimal measurements to access classical correlations of two-qubit states

    Full text link
    We analyze the optimal measurements accessing classical correlations in arbitrary two-qubit states. Two-qubit states can be transformed into the canonical forms via local unitary operations. For the canonical forms, we investigate the probability distribution of the optimal measurements. The probability distribution of the optimal measurement is found to be centralized in the vicinity of a specific von Neumann measurement, which we call the maximal-correlation-direction measurement (MCDM). We prove that for the states with zero-discord and maximally mixed marginals, the MCDM is the very optimal measurement. Furthermore, we give an upper bound of quantum discord based on the MCDM, and investigate its performance for approximating the quantum discord.Comment: 8 pages, 3 figures, version accepted by Phys. Rev.

    Isolation of a novel abscisic acid stress ripening (OsASR) gene from rice and analysis of the response of this gene to abiotic stresses

    Get PDF
    Abiotic stresses constitute a serious threat to agricultural production, which often develops into major crop production reducing factors around the world. Molecular biology technology has, however, emerged as a promising vehicle improving crop tolerance. A cold-, drought- and heat-inducible gene designated Oryza sativa L. abscisic acid stress-ripening (OsASR) gene, GenBank accession: AK318549.1 was identified in rice Peiā€™ai64s (O. sativa L. ssp. Indica cv.) using the GeneChip rice genome array (Affymetrix) representing 51, 279 transcripts from two rice subspecies japonica and indica. The expression profile of OsASR obtained by the microarray analysis was confirmed by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) analysis of the gene. The two sets of data matched very well, suggesting that OsASR is a multiple stresses responsive gene in rice. Based on the sequence, PCR primers were designed. The cDNA with the whole open reading frame (ORF) was amplified by PCR and cloned. Sequence analysis showed that the cDNA encodes a protein of 284 amino acid residues with M.W. ā‰ˆ 11.7 kD and pI ā‰ˆ 10.4. The gene encodes a protein with several conserved domains. Comparison of protein sequences indicates that OsASR encodes a putative abscisic acid stress-ripening protein. Analysis of the putative promoter region for candidate cis-regulatory elements using PlantCARE software identified seven kinds of cis-elements related to stress responses. Based on the aforementioned analyses and results obtained, we propose that OsASR is a novel candidate gene involved in stress tolerance in rice.Keywords: Rice, microarray, abiotic stress, reverse transcription polymerase chain reaction (RT-PCR), abscisic acid stress ripenin

    Clinical value of M1 macrophage-related genes identification in bladder urothelial carcinoma and in vitro validation

    Get PDF
    Background: Tumor microenvironment (TME) takes a non-negligible role in the progression and metastasis of bladder urothelial carcinoma (BLCA) and tumor development could be inhibited by macrophage M1 in TME. The role of macrophage M1-related genes in BLCA adjuvant therapy has not been studied well. Methods: CIBERSOR algorithm was applied for identification tumor-infiltrating immune cells (TICs) subtypes of subjects from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data sets. We identified potential modules of M1 macrophages by weighted gene co-expression network analysis (WGCNA). Nomogram was determined by one-way Cox regression and lasso regression analysis for M1 macrophage genes. The data from GEO are taken to verify the models externally. Kaplan-Meier and receiver operating characteristic (ROC) curves validated prognostic value of M1 macrophage genes. Finally, we divided patients into the low-risk group (LRG) and the high-risk group (HRG) based on the median risk score (RS), and the predictive value of RS in patients with BLCA immunotherapy and chemotherapy was investigated. Bladder cancer (T24, 5637, and BIU-87) and bladder uroepithelial cell line (SV-HUC-1) were used for in vitro validation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to validate the associated genes mRNA level. Results: 111 macrophage M1-related genes were identified using WGCNA. RS model containing three prognostically significant M1 macrophage-associated genes (FBXO6, OAS1, and TMEM229B) was formed by multiple Cox analysis, and a polygenic risk model and a comprehensive prognostic line plot was developed. The calibration curve clarified RS was a good predictor of prognosis. Patients in the LRG were more suitable for programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte associate protein-4 (CTLA4) combination immunotherapy. Finally, chemotherapeutic drug models showed patients in the LRG were more sensitive to gemcitabine and mitomycin. RT-qPCR result elucidated the upregulation of FBXO6, TMEM229B, and downregulation of OAS1 in BLCA cell lines. Conclusion: A predictive model based on M1 macrophage-related genes can help guide us in the treatment of BLCA

    The one-way unlocalizable quantum discord

    Full text link
    In this paper, we present the concept of the one-way unlocalizable quantum discord and investigate its properties. We provide a polygamy inequality for it in tripartite pure quantum system of arbitrary dimension. Several tradeoff relations between the one-way unlocalizable quantum discord and other correlations are given. If the von Neumann measurement is on a part of the system, we give two expressions of the one-way unlocalizable quantum discord in terms of partial distillable entanglement and quantum disturbance. Finally, we also provide a lower bound for bipartite shareability of quantum correlation beyond entanglement in a tripartite system.Comment: 6 pages, 3 figures. Minor corrections, references adde

    Identification and validation of novel biomarkers associated with immune infiltration for the diagnosis of osteosarcoma based on machine learning

    Get PDF
    Objectives: Osteosarcoma is the most common primary malignant tumor in children and adolescents, and the 5-year survival of osteosarcoma patients gained no substantial improvement over the past decades. Effective biomarkers in diagnosing osteosarcoma are warranted to be developed. This study aims to explore novel biomarkers correlated with immune cell infiltration in the development and diagnosis of osteosarcoma.Methods: Three datasets (GSE19276, GSE36001, GSE126209) comprising osteosarcoma samples were extracted from Gene Expression Omnibus (GEO) database and merged to obtain the gene expression. Then, differentially expressed genes (DEGs) were identified by limma and potential biological functions and downstream pathways enrichment analysis of DEGs was performed. The machine learning algorithms LASSO regression model and SVM-RFE (support vector machine-recursive feature elimination) analysis were employed to identify candidate hub genes for diagnosing patients with osteosarcoma. Receiver operating characteristic (ROC) curves were developed to evaluate the discriminatory abilities of these candidates in both training and test sets. Furthermore, the characteristics of immune cell infiltration in osteosarcoma, and the correlations between these potential genes and immune cell abundance were illustrated using CIBERSORT. qRT-PCR and western blots were conducted to validate the expression of diagnostic candidates.Results: GEO datasets were divided into the training (merged GSE19276, GSE36001) and test (GSE126209) groups. A total of 71 DEGs were screened out in the training set, including 10 upregulated genes and 61 downregulated genes. These DEGs were primarily enriched in immune-related biological functions and signaling pathways. After machine learning by SVM-RFE and LASSO regression model, four biomarkers were chosen for the diagnostic nomogram for osteosarcoma, including ASNS, CD70, SRGN, and TRIB3. These diagnostic biomarkers all possessed high diagnostic values (AUC ranging from 0.900 to 0.955). Furthermore, these genes were significantly correlated with the infiltration of several immune cells, such as monocytes, macrophages M0, and neutrophils.Conclusion: Four immune-related candidate hub genes (ASNS, CD70, SRGN, TRIB3) with high diagnostic value were confirmed for osteosarcoma patients. These diagnostic genes were significantly connected with the immune cell abundance, suggesting their critical roles in the osteosarcoma tumor immune microenvironment. Our study provides highlights on novel diagnostic candidate genes with high accuracy for diagnosing osteosarcoma patients

    Dynamics of multipartite quantum correlations under decoherence

    Full text link
    Quantum discord is an optimal resource for the quantification of classical and non-classical correlations as compared to other related measures. Geometric measure of quantum discord is another measure of quantum correlations. Recently, the geometric quantum discord for multipartite states has been introduced by Jianwei Xu [arxiv:quant/ph.1205.0330]. Motivated from the recent study [Ann. Phys. 327 (2012) 851] for the bipartite systems, I have investigated global quantum discord (QD) and geometric quantum discord (GQD) under the influence of external environments for different multipartite states. Werner-GHZ type three-qubit and six-qubit states are considered in inertial and non-inertial settings. The dynamics of QD and GQD is investigated under amplitude damping, phase damping, depolarizing and flipping channels. It is seen that the quantum discord vanishes for p>0.75 in case of three-qubit GHZ states and for p>0.5 for six qubit GHZ states. This implies that multipartite states are more fragile to decoherence for higher values of N. Surprisingly, a rapid sudden death of discord occurs in case of phase flip channel. However, for bit flip channel, no sudden death happens for the six-qubit states. On the other hand, depolarizing channel heavily influences the QD and GQD as compared to the amplitude damping channel. It means that the depolarizing channel has the most destructive influence on the discords for multipartite states. From the perspective of accelerated observers, it is seen that effect of environment on QD and GQD is much stronger than that of the acceleration of non-inertial frames. The degradation of QD and GQD happens due to Unruh effect. Furthermore, QD exhibits more robustness than GQD when the multipartite systems are exposed to environment.Comment: 15 pages, 4 figures, 4 table

    Ferroptosis-related gene HIC1 in the prediction of the prognosis and immunotherapeutic efficacy with immunological activity

    Get PDF
    BackgroundHypermethylated in Cancer 1 (HIC1) was originally confirmed as a tumor suppressor and has been found to be hypermethylated in human cancers. Although growing evidence has supported the critical roles of HIC1 in cancer initiation and development, its roles in tumor immune microenvironment and immunotherapy are still unclear, and no comprehensive pan-cancer analysis of HIC1 has been conducted.MethodsHIC1 expression in pan-cancer, and differential HIC1 expression between tumor and normal samples were investigated. Immunohistochemistry (IHC) was employed to validate HIC1 expression in different cancers by our clinical cohorts, including lung cancer, sarcoma (SARC), breast cancer, and kidney renal clear cell carcinoma (KIRC). The prognostic value of HIC1 was illustrated by Kaplan-Meier curves and univariate Cox analysis, followed by the genetic alteration analysis of HIC1 in pan-cancer. Gene Set Enrichment Analysis (GSEA) was conducted to illustrate the signaling pathways and biological functions of HIC1. The correlations between HIC1 and tumor mutation burden (TMB), microsatellite instability (MSI), and the immunotherapy efficacy of PD-1/PD-L1 inhibitors were analyzed by Spearman correlation analysis. Drug sensitivity analysis of HIC1 was performed by extracting data from the CellMinerā„¢ database.ResultsHIC1 expression was abnormally expressed in most cancers, and remarkable associations between HIC1 expression and prognostic outcomes of patients in pan-cancer were detected. HIC1 was significantly correlated with T cells, macrophages, and mast cell infiltration in different cancers. Moreover, GSEA revealed that HIC1 was significantly involved in immune-related biological functions and signaling pathways. There was a close relationship of HIC1 with TMB and MSI in different cancers. Furthermore, the most exciting finding was that HIC1 expression was significantly correlated with the response to PD-1/PD-L1 inhibitors in cancer treatment. We also found that HIC1 was significantly correlated with the sensitivity of several anti-cancer drugs, such as axitinib, batracylin, and nelarabine. Finally, our clinical cohorts further validated the expression pattern of HIC1 in cancers.ConclusionsOur investigation provided an integrative understanding of the clinicopathological significance and functional roles of HIC1 in pan-cancer. Our findings suggested that HIC1 can function as a potential biomarker for predicting the prognosis, immunotherapy efficacy, and drug sensitivity with immunological activity in cancers

    Avian Influenza (H5N1) Virus in Waterfowl and Chickens, Central China

    Get PDF
    In 2004, 3 and 4 strains of avian influenza virus (subtype H5N1) were isolated from waterfowl and chickens, respectively, in central Peopleā€™s Republic of China. Viral replication and pathogenicity were evaluated in chickens, quails, pigeons, and mice. We analyzed the sequences of the hemagglutinin and neuraminidase genes of the isolates and found broad diversity among them

    Identification of Key Genes and Pathways in Post-traumatic Stress Disorder Using Microarray Analysis

    Get PDF
    Introduction: Post-traumatic stress disorder (PTSD) is characterized by impaired fear extinction, excessive anxiety, and depression. However, the potential pathogenesis and cause of PTSD are not fully understood. Hence, the purpose of this study was to identify key genes and pathway involved in PTSD and reveal underlying molecular mechanisms by using bioinformatics analysis.Methods: The mRNA microarray expression profile dataset was retrieved and downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened using GEO2R. Gene ontology (GO) was used for gene function annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was performed for enrichment analysis. Subsequently, proteinā€“protein interaction (PPI) network and module analysis by the plugin MCODE were mapped by Cytoscape software. Finally, these key genes were verified in stress-exposed models by Real-Time quantitative (qRT-PCR). In addition, we performed text mining among the key genes and pathway with PTSD by using COREMINE.Results: A total of 1004 DEGs were identified. Gene functional annotations and enrichment analysis indicated that the most associated pathway was closely related to the Wnt signaling pathway. Using PPI network and module analysis, we identified a group of ā€œseedā€ genes. These genes were further verified by qRT-PCR. In addition, text mining indicated that the altered CYP1A2, SYT1, and NLGN1 affecting PTSD might work via the Wnt signaling pathway.Conclusion: By using bioinformatics analysis, we identified a number of genes and relevant pathway which may represent key mechanisms associated with PTSD. However, these findings require verification in future experimental studies
    • ā€¦
    corecore