55 research outputs found

    Latest Progress in MIMO Antennas Design

    Get PDF

    Minimizing the fluctuation of resonance driving terms in dynamic aperture optimization

    Full text link
    Dynamic aperture (DA) is an important nonlinear property of a storage ring lattice, which has a dominant effect on beam injection efficiency and beam lifetime. Generally, minimizing both resonance driving terms (RDTs) and amplitude dependent tune shifts is an essential condition for enlarging the DA. In this paper, we study the correlation between the fluctuation of RDTs along the ring and the DA area with double- and multi-bend achromat lattices. It is found that minimizing the RDT fluctuations is more effective than minimizing RDTs themselves in enlarging the DA, and thus can serve as a very powerful indicator in the DA optimization. Besides, it is found that minimizing lower-order RDT fluctuations can also reduce higher-order RDTs, which are not only more computationally complicated but also more numerous. The effectiveness of controlling the RDT fluctuations in enlarging the DA confirms that the local cancellation of nonlinear effects used in some diffraction-limited storage ring lattices is more effective than the global cancellation

    Design of Compact Dual-Polarized Antennas for MIMO Handsets

    Get PDF
    A design method of compact dual-polarized antennas has been proposed for multiple input and multiple output (MIMO) handset application. For the sake of high isolation in dual polarizations, a printed monopole and a hybrid slot antenna are combined using a coplanar waveguide (CPW) and microstrip hybrid feeding structure. The proposed topology will result in orthogonal current distribution modes for the different polarizations, which effectively reduces the mutual coupling of the two modes. The operation mechanism of the feeding structure is analyzed in principle and verified by simulation. Simulated and measured results show this compact dual-polarized antenna achieves isolation between the two ports of better than 25 dB, and the relative bandwidth is wider than 23.5%

    Dispersion coding of ENZ media via multiple photonic dopants

    Get PDF
    Epsilon-near-zero (ENZ) media are opening up exciting opportunities to observe exotic wave phenomena. In this work, we demonstrate that the ENZ medium comprising multiple dielectric photonic dopants would yield a comb-like dispersion of the effective permeability, with each magnetic resonance dominated by one specific dopant. Furthermore, at multiple frequencies of interest, the resonant supercouplings appearing or not can be controlled discretely via whether corresponding dopants are assigned or not. Importantly, the multiple dopants in the ENZ host at their magnetic resonances are demonstrated to be independent. Based on this platform, the concept of dispersion coding is proposed, where photonic dopants serve as “bits” to program the spectral response of the whole composite medium. As a proof of concept, a compact multi-doped ENZ cavity is fabricated and experimentally characterized, whose transmission spectrum is manifested as a multi-bit reconfigurable frequency comb. The dispersion coding is demonstrated to fuel a batch of innovative applications including dynamically tunable comb-like dispersion profiled filters, radio-frequency identification tags, etc.© 2022, The Author(s).Y.L. acknowledges partial support from the National Natural Science Foundation of China (NSFC) under grant 62022045, and in part by the Beijing Nova Program of Science and Technology under Grant Z191100001119082, as well as the support from the Beijing National Research Center for Information Science and Technology. I.L. acknowledges support from project RTI2018-093714-J-I00 sponsored by MCIU/AEI/FEDER/UE

    Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide-propylene oxide demulsifier

    Get PDF
    The demulsification mechanism of asphaltene-stabilized water-in-toluene emulsions by an ethylene-oxide-propylene oxide (EO-PO) based polymeric demulsifier was studied. Demulsification efficiency was determined by bottle tests and correlated to the physicochemical properties of asphaltene interfacial films after demulsifier addition. From bottle tests and droplet coalescence experiments, the demulsifier showed an optimal performance at 2.3 ppm (mass basis) in toluene. At high concentrations, the demulsification performance deteriorated due to the intrinsic stabilizing capacity of the demulsifier, which was attributed to steric repulsion between water droplets. Addition of demulsifier was shown to soften the asphaltene film (i.e., reduce the viscoelastic moduli of asphaltene films) under both shear and compressional interfacial deformations. Study of the macrostructures and the chemical composition of asphaltene film at the toluene-water interface after demulsifier addition demonstrated gradual penetration of the demulsifier into the asphaltene film. Demulsifier penetration in the asphaltene film changed the asphaltene interfacial mobility and morphology, as probed with Brewster angle and atomic force microscopy

    A Novel Dual-band Printed Diversity Antenna for Mobile Terminals

    Get PDF

    Targeting glutamine metabolism in PIK3CA mutant colorectal cancers

    Get PDF
    We recently reported that PIK3CA mutant colorectal cancers (CRCs) are addicted to glutamine through up-regulation of glutamate pyruvate transaminase 2 (GPT2). A GPT2 inhibitor suppresses in vivo growth of PIK3CA mutant, but not wild-type, CRCs. This study indicates that targeting glutamine may be an effective approach to treat CRCs with PIK3CA mutations

    Impact of Mutual Coupling and Polarization of Antennas on BER Performances of Spatial Multiplexing MIMO Systems

    Get PDF
    This paper is aimed at studying the impacts of mutual coupling, matching networks, and polarization of antennas on performances of Multiple-Input Multiple-Output (MIMO) systems employing Spatial Multiplexing (SM). In particular, the uncoded average Bit Error Rate (BER) of MIMO systems is investigated. An accurate signal analysis framework based on circuit network parameters is presented to describe the transmit/receive characteristics of the matched/unmatched antenna array. The studied arrays consist of matched/unmatched compact copolarization and polarization diversity antenna array. Monte-Carlo numerical simulations are used to study the BER performances of the SM MIMO systems using maximum-likelihood and/or zero-forcing detection schemes. The simulation results demonstrate that the use of matching networks can improve the BER performance of SM MIMO systems significantly, and the BER performance deterioration due to antenna orientation randomness can be compensated by use of polarization diversity antenna arrays
    corecore