12 research outputs found
The contribution of double-fed wind farms to transient voltage and damping of power grids
Kako bi se povećala mogućnost održavanja prolaznog napona i oscilacija sustava prigušenja, u radu se predstavlja dodatna prolazna upravljačka shema vjetroelektrane. Analiza pokazuje da u uvjetima jakih mreža, oslanjanje na vlastitu reaktivnu snagu turbina na vjetar u svrhu podrške pada prolaznog napona, dovodi do značajnog povećanja struje rotora; u uvjetima slabih mreža, prolazna reaktivna snaga vjetroelektrana ne samo da služi za prigušivanje pada prolaznog napona nego i čini prihvatljivom povećanje uzbudne struje rotora. Uz to, kad se dvostruko napajani indukcioni generatori pomiješaju s konvencionalnim energanama za prijenos snage, moguće je upravljati povećanjem prigušenja sustava dodajući prigušenje preko vjetroelektrana u nastojanju poboljšanja stabilnosti cjelokupnog sustava. U svrhu implementacije ove sheme, proizvodimo eksperimentalni prototip sastavljen od IPC, glavne sabirnice i optičke opreme i provodimo ispitivanje zatvorene petlje na digitalnom simulatoru u realnom vremenu (RTDS). Simulacije pokazuju da u uvjetima slabih mreža implementacija regulacije reaktivne snage vjetreoelektrana može donekle prigušiti pad napona.To improve the ability of transient voltage support and that of damping system oscillation, this paper presents the additional transient control scheme of wind farm. The analysis indicates that under the condition of strong grids, relying on wind turbines’ own reactive power to support the transient voltage drop leads to the significant increase of rotor current; under the condition of weak grids, transient reactive power released by wind farms not only serves to suppress transient voltage drop but also makes acceptable the increase of rotor excitation current. In addition, when double-fed induction generators are mixed with conventional power plants for power transmission, we can control the increase of system damping by adding damping through wind turbines in a bid to improve the stability of the overall system. In order to implement this scheme, we produce the experimental prototype composed of IPC, fieldbus and optical equipment and conduct the closed-loop test on the real-time digital simulator (RTDS). Simulations show that under the condition of weak grids, implementing the reactive power regulation of wind farms can suppress their voltage drop to a certain extent
Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes
Plant height (PH), a crucial trait related to yield potential in crop plants, is known to be typically quantitatively inherited. However, its full expression can be inhibited by a limited water supply. In this study, the genetic basis of the developmental behaviour of PH was assessed in a 150-line wheat (Triticum aestivum L.) doubled haploid population (Hanxuan 10×Lumai 14) grown in 10 environments (year×site×water regime combinations) by unconditional and conditional quantitative trait locus (QTL) analyses in a mixed linear model. Genes that were expressed selectively during ontogeny were identified. No single QTL was continually active in all periods of PH growth, and QTLs with additive effects (A-QTLs) expressed in the period S1|S0 (the period from the original point to the jointing stage) formed a foundation for PH development. Additive main effects (a effects), which were mostly expressed in S1|S0, were more important than epistatic main effects (aa effects) or QTL×environment interaction (QE) effects, suggesting that S1|S0 was the most significant development period affecting PH growth. A few QTLs, such as QPh.cgb-6B.7, showed high adaptability for water-limited environments. Many QTLs, including four A-QTLs (QPh.cgb-2D.1, QPh.cgb-4B.1, QPh.cgb-4D.1, and QPh.cgb-5A.7) coincident with previously identified reduced height (Rht) genes (Rht8, Rht1, Rht2, and Rht9), interacted with more than one other QTL, indicating that the genetic architecture underlying PH development is a network of genes with additive and epistatic effects. Therefore, based on multilocus combinations in S1|S0, superior genotypes were predicted for guiding improvements in breeding for PH
A Doubly-Fed Induction Generator Adaptive Control Strategy and Coordination Technology Compatible with Feeder Automation
The extensive connection of distributed generation (DG) with the distribution network (DN) is one of the core features of a smart grid, but in case of a large number, it may result in problems concerning the DN-DG compatibility during fault isolation and service restoration, for which no efficient and economic solutions have been developed. This paper proposes a doubly-fed induction generator (DFIG) adaptive control strategy (ACS) and a coordination technology to be compatible with the typical feeder automation (FA) protection logics in the ring distribution system. First of all, an ACS simulating the inertia/damping characteristics and excitation principles of synchronous generators is developed to achieve seamless switching between DFIG grid-connection/island modes, and make distant synchronization possible. Next, a technology coordinating the DFIG islands controlled by ACS and the remote tie-switches based on local inspection of synchronization conditions for closing is developed to achieve the safety grid-connection of DFIG islands in the absence of DN-DG communication. At the last, a detailed simulation scenario with a ring DN accessed by five DFIGs is used to validate the effectiveness of ACS and coordination technology compatible with FA in various faults scenes
Combination with Continual Learning Update Scheme for Power System Transient Stability Assessment
In recent years, the power system transient stability assessment (TSA) based on a data-driven method has been widely studied. However, the topology and modes of operation of power systems may change frequently due to the complex time-varying characteristics of power systems. which makes it difficult for prediction models trained on stationary distributed data to meet the requirements of online applications. When a new working situation scenario causes the prediction model accuracy not to meet the requirements, the model needs to be updated in real-time. With limited storage space, model capacity, and infinite new scenarios to be updated for learning, the model updates must be sustainable and scalable. Therefore, to address this problem, this paper introduces the continual learning Sliced Cramér Preservation (SCP) algorithm to perform update operations on the model. A deep residual shrinkage network (DRSN) is selected as a classifier to construct the TSA model of SCP-DRSN at the same time. With the SCP, the model can be extended and updated just by using the new scenarios data. The updated prediction model not only complements the prediction capability for new scenarios but also retains the prediction ability under old scenarios, which can avoid frequent updates of the model. The test results on a modified New England 10-machine 39-bus system and an IEEE 118-bus system show that the proposed method in this paper can effectively update and extend the prediction model under the condition of using only new scenarios data. The coverage of the updated model for new scenarios is improving
A Study of Interpolation Compensation Based Large Step Simulation of PWM Converters
Real-time online simulation based on a real-time workshop (RTW) plays a vital role in the study and application of power electronics. However, restricted by the performance of equipment and hardware, the simulators so far available in the market mainly support simulation steps over 50 μs, while large step simulation may result in the action delay of pulse-width modulating (PWM), numerical oscillation and high-level non-characteristic harmonic distortion. In view of these problems, this paper puts forward a modeling method based on integral prediction and interpolation compensation. First of all, prediction is performed one step in advance by the implicit trapezoidal method to find out the accurate time when the triangle carrier wave intersects with the modulation wave. At the same time, a mathematic model is built for the insulated gate bipolar transistor (IGBT) to output equivalent voltage waveform according to the principle of area equivalent. Next, in MATLAB/Simulink, offline simulation is performed with the three-phase AC-DC-AC converter as the subject. By comparing the control accuracy, the content of harmonic wave and the simulation time, the simulation effects of the 50 μs fixed-step interpolation prediction model are the same as that for a 5 μs fixed-step standard model. Finally, the effectiveness and high efficiency of this algorithm are verified on a real-time simulator, marking the application of offline models on real-time simulators
An Adaptive Additional Control Strategy for Suppressing Low-Frequency Grid Oscillations in Doubly-Fed Wind Farms
Aiming at the problem of weakly or negatively damped low-frequency oscillations caused by cross-zone transmission of electricity from large wind farms, this paper proposes a fast terminal sliding-mode additional damping controller based on the Lyapunov stability theory. By investigating the flexible power regulation characteristics and the capability of dynamic frequency response to damping regulation of doubly-fed wind turbines (DFIG), a rotor magnetic chain controller is designed according to the relationship between the applied voltage and magnetic chain of DFIG rotor and the sliding mode variable structure control method. When low-frequency oscillations occur in the system, the desired magnetic chain value will deviate from the actual magnetic chain value. The additional damping controller outputs an adaptive control signal for the rotor-side power control link to increase the active output of the wind farm and suppress low-frequency oscillations in the system. A simulation model of the wind power grid-connected system is established in MATLAB/Simulink for off-line simulations, and a real-time simulation experiment of a large wind farm cross-zone transmission model based on real time digital simulation system is conducted. The results of both off-line and real-time simulations show that when low-frequency oscillations occur in the system, the proposed control method can quickly regulate the active power emitted by the DFIG and enhance the damping level of the system, which is effective in suppressing low-frequency oscillations in the system
Multi-Rate Parallel Real-Time Simulation Method for Doubly Fed Wind Power Systems Based on FPGA–CPU
A multi-rate parallel real-time simulation method based on FPGA–CPU is studied to realize the asynchronous co-simulation of the converter of doubly fed wind power systems with the wind turbine and external power grid. The doubly fed wind power system is partitioned by simulation step length, and the partitioned small-step-length data are processed using integral homogenization. For large-step data, an improved delay-compensated linear interpolation method combined with Newton interpolation is proposed for processing. The general small time-step (GST) model method is used to implement the FPGA modeling of the small-step converter, and resource optimization is achieved through timing time-division multiplexing. Asynchronous parallel co-simulation of a doubly fed wind power system is implemented on an FPGA–CPU co-simulation platform. Among them, the FPGA realizes the development of the converter HDL with a small step of 1 μs, while the CPU completes the simulation of the wind turbine and power grid synchronously with a large step of 50 μs. Finally, by comparing with MATLAB/Simulink offline simulation and analyzing the error, it is concluded that the simulation accuracy of the improved method in this paper is higher than that of the un-interpolated parallel simulation, which verifies the real-time performance and accuracy of the modeling and improved method in this paper
DCSST Multi-Modular Equalization Scheme Based on Distributed Control
As an important part of the DC micro-grid, DC solid-state transformers (DCSST) usually use a dual-loop control that combines the input equalization and output voltage loop. This strategy fails to ensure output equalization when the parameters of each dual active bridge (DAB) converter module are inconsistent, thus reducing the operational efficiency of the DCSST. To solve the above problems, a DCSST-balancing control strategy based on loop current suppression is presented. By fixing the phase-shifting angle within the bridge and adjusting the phase-shifting angle between bridges, the circulation current of each DAB converter module is reduced. Based on the double-loop control of the DAB, five controllers are nested outside each DAB submodule to achieve distributed control of the DCSST. The proposed control strategy can reduce the system circulation current with different circuit parameters of the submodules, ensure the balance of input voltage and output current of each submodule, and increase the robustness of the system. The simulation results verify the validity of the proposed method
DCSST Multi-Modular Equalization Scheme Based on Distributed Control
As an important part of the DC micro-grid, DC solid-state transformers (DCSST) usually use a dual-loop control that combines the input equalization and output voltage loop. This strategy fails to ensure output equalization when the parameters of each dual active bridge (DAB) converter module are inconsistent, thus reducing the operational efficiency of the DCSST. To solve the above problems, a DCSST-balancing control strategy based on loop current suppression is presented. By fixing the phase-shifting angle within the bridge and adjusting the phase-shifting angle between bridges, the circulation current of each DAB converter module is reduced. Based on the double-loop control of the DAB, five controllers are nested outside each DAB submodule to achieve distributed control of the DCSST. The proposed control strategy can reduce the system circulation current with different circuit parameters of the submodules, ensure the balance of input voltage and output current of each submodule, and increase the robustness of the system. The simulation results verify the validity of the proposed method