118 research outputs found

    Multimodal Convolutional Neural Networks for Matching Image and Sentence

    Full text link
    In this paper, we propose multimodal convolutional neural networks (m-CNNs) for matching image and sentence. Our m-CNN provides an end-to-end framework with convolutional architectures to exploit image representation, word composition, and the matching relations between the two modalities. More specifically, it consists of one image CNN encoding the image content, and one matching CNN learning the joint representation of image and sentence. The matching CNN composes words to different semantic fragments and learns the inter-modal relations between image and the composed fragments at different levels, thus fully exploit the matching relations between image and sentence. Experimental results on benchmark databases of bidirectional image and sentence retrieval demonstrate that the proposed m-CNNs can effectively capture the information necessary for image and sentence matching. Specifically, our proposed m-CNNs for bidirectional image and sentence retrieval on Flickr30K and Microsoft COCO databases achieve the state-of-the-art performances.Comment: Accepted by ICCV 201

    Pengembangan Media Pembelajaran Fisika Berupa Buletin Dalam Bentuk Buku Saku Untuk Pembelajaran Fisikakelas VIII Materi Gaya Ditinjau Dari Minat Baca Siswa

    Full text link
    Tujuan dari penelitian ini untuk mengembangkan media pembelajaran berupa buletin dalam bentuk buku saku untuk pembelajaran Fisika kelas VIII pada materi Gaya ditinjau dari aspek materi, konstruk, dan bahasa serta minat baca siswa. Penelitian ini termasuk penelitian pengembangan yang menggunakan metode Research and Development (R&D). Penelitian ini menggunakan model pengembangan model prosedural yaitu model yang bersifat deskriptif yang menunjukkan tahapan-tahapan yang harus diikuti untuk menghasilkan produk berupa media pembelajaran.Jenis data yang diperoleh bersifat kualitatif dan kuantitatif yaitu angket dan wawancara. Teknik analisis data yang digunakan adalah analisis deskriptif kualitatif dan kuantitatif. Hasil penelitian menunjukkan bahwa media pembelajaran yang dikembangkan berupa buletin Fisika dalam bentuk buku saku memiliki kriteria sangat baik berdasarkan penilaian dari ahli materi, ahli bahasa Indonesia, dan ahli media memberikan rata-rata penilaian sebesar 86,56%. Media pembelajaran yang dikembangkan juga memiliki kriteria sangat baik bila ditinjau dari peningkatan minat baca siswa. Hal ini terbukti pada hasil angket minat baca awal dan akhir yang diberikan kepada siswa yang memberikan rata-rata peningkatan sebesar 11,13%. Selain itu juga dianalisis dengan menggunakan uji-t berpasangan terhadap data masing-masing kelompok uji coba untuk mengetahui signifikansi dari peningkatan minat baca siswa. Untuk uji coba perorangan diperoleh hasil perhitungan thitung = 6,957 > ttabel = 1,943 dan nilai Sig. = 0,001 < 0,05 yang berarti sangat signifikan. Untuk kelompok kecil didapatkan hasil perhitungan bahwa thitung = 7,848 > ttabel = 1,725 dan nilai Sig. = 0,000 < 0,05 yang berarti sangat signifikan. Untuk kelompok besar juga didapatkan hasil perhitungan bahwa thitung = 20,214 > ttabel = 1,725 dan nilai Sig. = 0,000 < 0,05 yang berarti sangat signifikan. Simpulan dari penelitian ini adalah media pembelajaran berupa buletin dalam bentuk buku saku memiliki kriteria sangat baik bila ditinjau dari aspek materi, konstruk, dan bahasa serta minat baca siswa

    Activation of Nrf2 by Sulforaphane Inhibits High Glucose-Induced Progression of Pancreatic Cancer via AMPK Dependent Signaling

    Get PDF
    Background/Aims: Sulforaphane (SFN) is known for its potent bioactive properties, such as anti-inflammatory and anti-tumor effects. However, its anti-tumor effect on pancreatic cancer is still poorly understood. In the present study, we explored the therapeutic potential of SFN for pancreatic cancer and disclosed the underlying mechanism. Methods: Panc-1 and MiaPaca-2 cell lines were used in vitro. The biological function of SFN in pancreatic cancer was measured using EdU staining, colony formation, apoptosis, migration and invasion assays. Reactive oxygen species (ROS) production was measured using 2’-7’-Dichlorofluorescein diacetate (DCF-DA) fluorometric analysis. Western blotting and immunofluorescence were used to measure the protein levels of p-AMPK and epithelial-mesenchymal transition (EMT) pathway-related proteins, and cellular translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Nude mice and transgenic pancreatic cancer mouse model were used to measure the therapeutic potential of SFN on pancreatic cancer. Results: SFN can inhibit pancreatic cancer cell growth, promote apoptosis, curb colony formation and temper the migratory and invasion ability of pancreatic cancer cells. Mechanistically, excessive ROS production induced by SFN activated AMPK signaling and promoted the translocation of Nrf2, resulting in cell viability inhibition of pancreatic cancer. Pretreatment with compound C, a small molecular inhibitor of AMPK signaling, reversed the subcellular translocation of Nrf2 and rescued cell invasion ability. With nude mice and pancreatic cancer transgenic mouse, we identified SFN could inhibit tumor progression, with smaller tumor size and slower tumor progression in SFN treatment group. Conclusion: Our study not only elucidates the mechanism of SFN-induced inhibition of pancreatic cancer in both normal and high glucose condition, but also testifies the dual-role of ROS in pancreatic cancer progression. Collectively, our research suggests that SFN may serve as a potential therapeutic choice for pancreatic cancer

    Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis

    Get PDF
    Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αv β6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin α v in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and α v β 6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD

    Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer

    Get PDF
    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy

    Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer

    Get PDF
    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy

    Detection of copy number variation from array intensity and sequencing read depth using a stepwise Bayesian model

    Get PDF
    Abstract Background Copy number variants (CNVs) have been demonstrated to occur at a high frequency and are now widely believed to make a significant contribution to the phenotypic variation in human populations. Array-based comparative genomic hybridization (array-CGH) and newly developed read-depth approach through ultrahigh throughput genomic sequencing both provide rapid, robust, and comprehensive methods to identify CNVs on a whole-genome scale. Results We developed a Bayesian statistical analysis algorithm for the detection of CNVs from both types of genomic data. The algorithm can analyze such data obtained from PCR-based bacterial artificial chromosome arrays, high-density oligonucleotide arrays, and more recently developed high-throughput DNA sequencing. Treating parameters--e.g., the number of CNVs, the position of each CNV, and the data noise level--that define the underlying data generating process as random variables, our approach derives the posterior distribution of the genomic CNV structure given the observed data. Sampling from the posterior distribution using a Markov chain Monte Carlo method, we get not only best estimates for these unknown parameters but also Bayesian credible intervals for the estimates. We illustrate the characteristics of our algorithm by applying it to both synthetic and experimental data sets in comparison to other segmentation algorithms. Conclusions In particular, the synthetic data comparison shows that our method is more sensitive than other approaches at low false positive rates. Furthermore, given its Bayesian origin, our method can also be seen as a technique to refine CNVs identified by fast point-estimate methods and also as a framework to integrate array-CGH and sequencing data with other CNV-related biological knowledge, all through informative priors.</p

    Hsa-miR-196a2 Rs11614913 Polymorphism Contributes to Cancer Susceptibility: Evidence from 15 Case-Control Studies

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a family of endogenous, small and noncoding RNAs that negatively regulate gene expression by suppressing translation or degrading mRNAs. Recently, many studies investigated the association between hsa-miR-196a2 rs11614913 polymorphism and cancer risk, which showed inconclusive results. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a meta-analysis of 15 studies that included 9,341 cancer cases and 10,569 case-free controls. We assessed the strength of the association, using odds ratios (ORs) with 95% confidence intervals (CIs). Overall, individuals with the TC/CC genotypes were associated with higher cancer risk than those with the TT genotype (OR=1.18, 95% CI=1.03-1.34, P<0.001 for heterogeneity test). In the stratified analyses, we observed that the CC genotype might modulate breast cancer risk (OR=1.11, 95%CI=1.01-1.23, Pheterogeneity=0.210) and lung cancer risk (OR=1.25, 95%CI=1.06-1.46, Pheterogeneity=0.958), comparing with the TC/TT genotype. Moreover, a significantly increased risk was found among Asian populations in a dominant model (TC/CC versus TT, OR=1.24, 95% CI=1.07-1.43, Pheterogeneity=0.006). CONCLUSIONS: These findings supported that hsa-miR-196a2 rs11614913 polymorphism may contribute to the susceptibility of cancers

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The design of clothing washable labels based on NFC

    Get PDF
    In this paper, With the rapid development of NFC (Near Field Communication) technology and the digital advancement of clothing industry, a kind of clothing washable labels based on NFC is proposed and designed in this paper. It can be used to compose a clothing information system together with NFC mobile phones, mobile Internet, enterprise information centers, etc. By experiment, consumers can read and write NFC washable labels through their mobile phones, which can be quicker and more convenient to obtain clothing washing and maintenance information. Moreover, the NFC washable labels conform to the washing requirements of washable labels. The emergence of the NFC washable labels provides a physical basis for smart matching recommendations and precise directional push of clothing advertising information for consumers
    corecore