151 research outputs found

    Analytical Perspective for Photonic Bound States in the Continuum in Photonic Crystal Slabs

    Full text link
    We investigate the formation of photonic bound states in the continuum (BICs) in photonic crystal slabs from an analytical perspective. Unlike the stationary at-Γ\Gamma BICs which origin from the geometric symmetry, the tunable off-Γ\Gamma BICs are due to the weighted destructive via-the-continuum interference in the vicinity of accidental symmetry when the majority of the radiation is pre-canceled. The symmetric compatible nature of the off-Γ\Gamma BICs leads to a trapping of light that can be tuned through continuously varying the wavevector. With the analytical approach, we explain a reported experiment and predict the existence of a new BIC at an unrevealed symmetry.Comment: 5 pages, 5 figure

    Monitoring coalescence behavior of soft colloidal particles in water by small-angle light scattering

    Get PDF
    The fractal dimension (D f) of the clusters formed during the aggregation of colloidal systems reflects correctly the coalescence extent among the particles (Gauer et al., Macromolecules 42:9103, 2009). In this work, we propose to use the fast small-angle light scattering (SALS) technique to determine the D f value during the aggregation. It is found that in the diffusion-limited aggregation regime, the D f value can be correctly determined from both the power law regime of the average structure factor of the clusters and the scaling of the zero angle intensity versus the average radius of gyration. The obtained D f value is equal to that estimated from the technique proposed in the above work, based on dynamic light scattering (DLS). In the reaction-limited aggregation (RLCA) regime, due to contamination of small clusters and primary particles, the power law regime of the average structure factor cannot be properly defined for the D f estimation. However, the scaling of the zero angle intensity versus the average radius of gyration is still well defined, thus allowing one to estimate the D f value, i.e., the coalescence extent. Therefore, when the DLS-based technique cannot be applied in the RLCA regime, one can apply the SALS technique to monitor the coalescence extent. Applicability and reliability of the technique have been assessed by applying it to an acrylate copolymer colloi

    The Security of SIMON-like Ciphers Against Linear Cryptanalysis

    Get PDF
    In the present paper, we analyze the security of SIMON-like ciphers against linear cryptanalysis. First, an upper bound is derived on the squared correlation of SIMON-like round function. It is shown that the upper bound on the squared correlation of SIMON-like round function decreases with the Hamming weight of output mask increasing. Based on this, we derive an upper bound on the squared correlation of linear trails for SIMON and SIMECK, which is 22R+22^{-2R+2} for any RR-round linear trail. We also extend this upper bound to SIMON-like ciphers. Meanwhile, an automatic search algorithm is proposed, which can find the optimal linear trails in SIMON-like ciphers under the Markov assumption. With the proposed algorithm, we find the provably optimal linear trails for 1212, 1616, 1919, 2828 and 3737 rounds of SIMON32/48/64/96/12832/48/64/96/128. To the best of our knowledge, it is the first time that the provably optimal linear trails for SIMON6464, SIMON9696 and SIMON128128 are reported. The provably optimal linear trails for 1313, 1919 and 2525 rounds of SIMECK32/48/6432/48/64 are also found respectively. Besides the optimal linear trails, we also find the 2323, 3131 and 4141-round linear hulls for SIMON64/96/12864/96/128, and 1313, 2121 and 2727-round linear hulls for SIMECK32/48/6432/48/64. As far as we know, these are the best linear hull distinguishers for SIMON and SIMECK so far. Compared with the approach based on SAT/SMT solvers in \cite{KolblLT15}, our search algorithm is more efficient and practical to evaluate the security against linear cryptanalysis in the design of SIMON-like ciphers
    corecore