18,050 research outputs found
Re-Study on the wave functions of states in LFQM and the radiative decays of
The Light-front quark model (LFQM) has been applied to calculate the
transition matrix elements of heavy hadron decays. However, it is noted that
using the traditional wave functions of the LFQM given in literature, the
theoretically determined decay constants of the obviously
contradict to the data. It implies that the wave functions must be modified.
Keeping the orthogonality among the states and fitting their decay
constants we obtain a series of the wave functions for . Based on
these wave functions and by analogy to the hydrogen atom, we suggest a modified
analytical form for the wave functions. By use of the modified
wave functions, the obtained decay constants are close to the experimental
data. Then we calculate the rates of radiative decays of . Our predictions are consistent with the experimental data on
decays within the theoretical and experimental
errors.Comment: 10 pages, 2 figures, 1 table. Typos corrected and more discussions
added. accepted for publication in Physical Review
Maximizing spectral radii of uniform hypergraphs with few edges
In this paper we investigate the hypergraphs whose spectral radii attain the
maximum among all uniform hypergraphs with given number of edges. In particular
we characterize the hypergraph(s) with maximum spectral radius over all
unicyclic hypergraphs, linear or power unicyclic hypergraphs with given girth,
linear or power bicyclic hypergraphs, respectively
Topology and Criticality in Resonating Affleck-Kennedy-Lieb-Tasaki loop Spin Liquid States
We exploit a natural Projected Entangled-Pair State (PEPS) representation for
the resonating Affleck-Kennedy-Lieb-Tasaki loop (RAL) state. By taking
advantage of PEPS-based analytical and numerical methods, we characterize the
RAL states on various two-dimensional lattices. On square and honeycomb
lattices, these states are critical since the dimer-dimer correlations decay as
a power law. On kagome lattice, the RAL state has exponentially decaying
correlation functions, supporting the scenario of a gapped spin liquid. We
provide further evidence that the RAL state on the kagome lattice is a
spin liquid, by identifying the four topological sectors and
computing the topological entropy. Furthermore, we construct a one-parameter
family of PEPS states interpolating between the RAL state and a short-range
Resonating Valence Bond state and find a critical point, consistent with the
fact that the two states belong to two different phases. We also perform a
variational study of the spin-1 kagome Heisenberg model using this
one-parameter PEPS.Comment: 10 pages, 14 figures, published versio
BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana
The unfolded protein response (UPR) is required for protein homeostasis in the endoplasmic reticulum (ER) when plants are challenged by adverse environmental conditions. Inositol-requiring enzyme 1 (IRE1), the bifunctional protein kinase / ribonuclease, is an important UPR regulator in plants mediating cytoplasmic splicing of the mRNA encoding the transcription factor bZIP60. This activates the UPR signaling pathway and regulates canonical UPR genes. However, how the protein activity of IRE1 is controlled during plant growth and development is largely unknown. In the present study, we demonstrate that the nuclear and Golgi-localized protein BLISTER (BLI) negatively controls the activity of IRE1A/IRE1B under normal growth condition in Arabidopsis. Loss-of-function mutation of BLI results in chronic up-regulation of a set of both canonical UPR genes and non-canonical UPR downstream genes, leading to cell death and growth retardation. Genetic analysis indicates that BLI-regulated vegetative growth phenotype is dependent on IRE1A/IRE1B but not their canonical splicing target bZIP60. Genetic complementation with mutation analysis suggests that the D570/K572 residues in the ATP-binding pocket and N780 residue in the RNase domain of IRE1A are required for the activation of canonical UPR gene expression, in contrast, the D570/K572 residues and D590 residue in the protein kinase domain of IRE1A are important for the induction of non-canonical UPR downstream genes in the BLI mutant background, which correlates with the shoot growth phenotype. Hence, our results reveal the important role of IRE1A in plant growth and development, and BLI negatively controls IRE1A’s function under normal growth condition in plants
- …