885 research outputs found

    Preparation of decoherence-free, subradiant states in a cavity

    Get PDF
    The cause of decoherence in a quantum system can be traced back to the interaction with the environment. As it has been pointed out first by Dicke, in a system of N two-level atoms where each of the atoms is individually dipole coupled to the environment, there are collective, subradiant states, that have no dipole coupling to photon modes, and therefore they are expected to decay slower. This property also implies that these type of states, which form an N-1 dimensional subspace of the atomic subsytem, also decohere slower. We propose a scheme which will create such states. First the two-level atoms are placed in a strongly detuned cavity and one of the atoms, called the control atom is excited. The time evolution of the coupled atom-cavity system leads to an appropriately entangled state of the atoms. By applying subsequent laser pulses at a well defined time instant, it is possible to drive the atomic state into the subradiant, i. e., decoherence free subspace. Up to a certain average number of the photons, the result is independent of the state of the cavity. The analysis of the conditions shows that this scheme is feasible with present day techniques achieved in atom cavity interaction experiments.Comment: 5 page

    Quantum Correlated Interstitials and the Hall Resistivity of the Magnetically Induced Wigner Crystal

    Full text link
    We study a trial wavefunction for an interstitial in a Wigner crystal. We find that the electron correlations, ignored in a conventional Hartree-Fock treatment, dramatically lower the interstitial energy, especially at fillings close to an incompressible liquid state. The correlation between the interstitial electron and the lattice electrons at ν<1/m\nu <1/m is introduced by constructing a trial wave- function which bears a Jastrow factor of a Laughlin state at ν=1/m\nu=1/m. For fillings close to but just below ν=1/m\nu=1/m, we find that a perfect Wigner crystal becomes unstable against formation of such interstitials. It is argued that conduction due to correlated interstitials in the presence of weak disorder leads to the {\it classical} Hall resistivity, as seen experimentally.Comment: 10 pages, RevTe

    Impurity and spin effects on the magneto-spectroscopy of a THz-modulated nanostructure

    Full text link
    We present a grid-free DFT model appropriate to explore the time evolution of electronic states in a semiconductor nanostructure. The model can be used to investigate both the linear and the nonlinear response of the system to an external short-time perturbation in the THz regime. We use the model to study the effects of impurities on the magneto-spectroscopy of a two-dimensional electron gas in a nanostructure excited by an intense THz radiation. We do observe a reduction in the binding energy of the impurity with increasing excitation strength, and at a finite magnetic field we find a slow onset of collective spin-oscillations that can be made to vanish with a stronger excitation.Comment: LaTeX,10 pages with 11 embedded postscript figure

    Generalized second law of thermodynamics in f(T) gravity

    Full text link
    We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics in the framework of f(T) modified teleparallel gravity. We consider a spatially flat FRW universe containing only the pressureless matter. The boundary of the universe is assumed to be enclosed by the Hubble horizon. For two viable f(T) models containing f(T)=T+μ1(T)nf(T)=T+\mu_1{(-T)}^n and f(T)=Tμ2T(1eβT0T)f(T)=T-\mu_2 T(1-e^{\beta\frac{T_0}{T}}), we first calculate the effective equation of state and deceleration parameters. Then, we investigate the null and strong energy conditions and conclude that a sudden future singularity appears in both models. Furthermore, using a cosmographic analysis we check the viability of two models. Finally, we examine the validity of the GSL and find that for both models it is satisfied from the early times to the present epoch. But in the future, the GSL is violated for the special ranges of the torsion scalar T.Comment: 16 pages, 10 figures, accepted by JCAP 201

    A spectrum deconvolution method based on grey relational analysis

    Get PDF
    The extensive usage of X ray spectroscopies in studying complex material systems is not only intended to reveal underlying mechanisms that govern physical phenomena, but also used in applied studies focused on an insight driven performance improvement of a wide range of devices. However, the traditional analysis methods for X ray spectroscopic data are rather time consuming and sensitive to errors in data pre processing e.g., normalization or background subtraction . In this study, a method based on grey relational analysis, a multi variable statistical method, is proposed to analyze and extract information from X ray spectroscopic data. As a showcase, the valence bands of microcrystalline silicon suboxides probed by hard X ray photoelectron spectroscopy HAXPES were investigated. The results obtained by the proposed method agree well with conventionally derived composition information e.g., curve fit of Si 2p core level of the silicon suboxides . Furthermore, the uncertainty of chemical compositions derived by the proposed method is smaller than that of traditional analysis methods e.g., the least square fit , when artificial linear functions are introduced to simulate the errors in data pre processing. This suggests that the proposed method is capable of providing more reliable and accurate results, especially for data containing significant noise contributions or that is subject to inconsistent data pre processing. Since the proposed method is less experience driven and error prone, it offers a novel approach for automate data analysis, which is of great interest for various applications, such as studying combinatorial material librarie

    Electron-Electron Interactions and the Hall-Insulator

    Full text link
    Using the Kubo formula, we show explicitly that a non-interacting electron system can not behave like a Hall-insulator, {\it ie.,} a DC resistivity matrix ρxx\rho_{xx}\rightarrow\infty and ρxy=\rho_{xy}=finite in the zero temperature limit, as has been observed recently in experiment. For a strongly interacting electron system in a magnetic field, we illustrate, by constructing a specific form of correlations between mobile and localized electrons, that the Hall resistivity can approximately equal to its classical value. A Hall-insulator is realized in this model when the density of mobile electrons becomes vanishingly small. It is shown that in non-interacting electron systems, the zero-temperature frequency-dependent conductacnce generally does not give the DC conductance.Comment: 11 pages, RevTeX3.

    Spin Susceptibility and Superexchange Interaction in the Antiferromagnet CuO

    Full text link
    Evidence for the quasi one-dimensional (1D) antiferromagnetism of CuO is presented in a framework of Heisenberg model. We have obtained an experimental absolute value of the paramagnetic spin susceptibility of CuO by subtracting the orbital susceptibility separately from the total susceptibility through the 63^{63}Cu NMR shift measurement, and compared directly with the theoretical predictions. The result is best described by a 1D S=1/2S=1/2 antiferromagnetic Heisenberg (AFH) model, supporting the speculation invoked by earlier authors. We also present a semi-quantitative reason why CuO, seemingly of 3D structure, is unexpectedly a quasi 1D antiferromagnet.Comment: 7 pages including 4 tables and 9 figure

    Global Distribution of Rubella Virus Genotypes

    Get PDF
    Phylogenetic analysis of a collection of 103 E1 gene sequences from rubella viruses isolated from 17 countries from 1961 to 2000 confirmed the existence of at least two genotypes. Rubella genotype I (RGI) isolates, predominant in Europe, Japan, and the Western Hemisphere, segregated into discrete subgenotypes; intercontinental subgenotypes present in the 1960s and 1970s were replaced by geographically restricted subgenotypes after ~1980. Recently, active subgenotypes include one in the United States and Latin America, one in China, and a third that apparently originated in Asia and spread to Europe and North America, starting in 1997, indicating the recent emergence of an intercontinental subgenotype. A virus that potentially arose as a recombinant between two RGI subgenotypes was discovered. Rubella genotype II (RGII) showed greater genetic diversity than did RGI and may actually consist of multiple genotypes. RGII viruses were limited to Asia and Europe; RGI viruses were also present in most of the countries where RGII viruses were isolated

    Band structure related wave function symmetry of amphoteric Si dopants in GaAs

    Full text link
    Autocompensated Si-doped GaAs is studied with cross-sectional scanning tunneling spectroscopy (X-STS). The local electronic contrasts of substitutional Si(Ga) donors and Si(As) acceptors under the (110) cleavage plane are imaged with high resolution. Si(Ga) donor atoms exhibit radially symmetric contrasts. Si(As) acceptors have anisotropic features. The anisotropic acceptor contrasts are traced back to a tunnel process at the valence band edge. They reflect the probability density distribution of the localized acceptor hole state.Comment: 10 pages, 3 figure
    corecore