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A B S T R A C T   

The extensive usage of X-ray spectroscopies in studying complex material systems is not only intended to reveal 
underlying mechanisms that govern physical phenomena, but also used in applied studies focused on an insight- 
driven performance improvement of a wide range of devices. However, the traditional analysis methods for X-ray 
spectroscopic data are rather time-consuming and sensitive to errors in data pre-processing (e.g., normalization 
or background subtraction). In this study, a method based on grey relational analysis, a multi-variable statistical 
method, is proposed to analyze and extract information from X-ray spectroscopic data. As a showcase, the 
valence bands of microcrystalline silicon suboxides probed by hard X-ray photoelectron spectroscopy (HAXPES) 
were investigated. The results obtained by the proposed method agree well with conventionally derived 
composition information (e.g., curve fit of Si 2p core level of the silicon suboxides). Furthermore, the uncertainty 
of chemical compositions derived by the proposed method is smaller than that of traditional analysis methods (e. 
g., the least square fit), when artificial linear functions are introduced to simulate the errors in data pre- 
processing. This suggests that the proposed method is capable of providing more reliable and accurate results, 
especially for data containing significant noise contributions or that is subject to inconsistent data pre-processing. 
Since the proposed method is less experience-driven and error-prone, it offers a novel approach for automate 
data analysis, which is of great interest for various applications, such as studying combinatorial material 
“libraries”.   

Introduction 

Modern optoelectronic devices, such as light emitting diodes and 
photovoltaic cells, consist of multiple functional materials (e.g., 
absorber, back contact, front contact, and buffer layer) with different 
optoelectronic properties [1]. The performance of the devices depends 
not only on the characteristics of the functional materials, but also is 
crucially determined by the nature and quality of the interfaces between 
the materials [2], because a variety of unique phenomena (e.g., multi-
ferroicity, spin-Hall effect, superconductivity) arise from symmetry 
breaking at interfaces due to strong coupling of charge, spin, and orbit 
[3]. Also, interfaces critically influence charge transfer and separation in 
e.g., photovoltaics. With an ever-increasing demand for better device 

performance, the tendency toward using complex material systems (e.g., 
ternary cathodes for lithium-ion batteries [4], multinary perovskite 
compound – based solar cells[5]) in devices posts a greater challenge – 
and opportunity – for device optimization. Hence, it is critical to fully 
understand the chemical and electronic structures of those complex 
materials and interfaces, in order to optimize the devices and shed light 
on the underlying physical mechanisms. 

As an example, hydrogenated microcrystalline silicon oxide (μc-SiOx: 
H) has attracted great attention as a functional material in photovoltaic 
devices, due to its unique properties (e.g., wide band gap, adaptable 
refractive index, and high conductivity) [6]. By utilizing a plasma to 
provide energy for the chemical reaction to take place during deposition, 
the processing temperature can be greatly reduced in plasma enhanced 
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chemical vapor deposition (PECVD), which makes PECVD suitable to 
prepare thin films on heat-sensitive materials or when thermal cycles are 
of great concerns [7,8]. Therefore, PECVD has been widely used in 
preparing silicon oxides and nitrides [9,10]. However, it was reported 
that the optoelectrical properties of the μc-SiOx:H prepared by PECVD is 
greatly influenced by its chemical compositions [6]. 

To establish correlation between the chemical compositions (and 
electronic structures) and the physical properties (e.g., optoelectrical 
properties) for materials, one of the important characterization tools is 
X-ray spectroscopy (e.g. X-ray photoelectron spectroscopy, X-ray ab-
sorption spectroscopy, X-ray emission spectroscopy) [11,12]. However, 
X-ray spectroscopic data incorporate a wide range of information, which 
originates from not only the materials or interfaces of interest, but also 
other relevant or irrelevant substances (e.g., surface adsorbates, buried 
layers, etc.). The traditional spectrum analysis methods, such as least 
square fit (LSF) or curve fit, focus on deriving a best linear combination 
of reference data or specific functions (e.g., Gaussian or Voigt profiles) 
for spectrum deconvolution, respectively. These methods are usually 
time-consuming and possess many limitations, such as subjectivity in 
setting the number of functions and corresponding parameters. These 
limitations render them inefficient at handling the spectroscopic data of 
large sample sets, which are increasingly common, due in part to the 
increasing complexity of materials (e.g., binary, ternary, multinary 
compounds) but also to increased automation in measurement processes 
and the study of combinatorial material “libraries.” 

Furthermore, analysis uncertainties can originate from noise and 
artifacts in the data induced by fluctuation of photon flux, detector non- 
linearity, different degrees of sample contamination and sample 
misalignment. Generally, data pre-processing techniques, such as base-
line correction and noise suppression, are often employed before any 
further analysis. These processes are commonly experience-driven and 
thus prone to personal criteria or inconsistence in data evaluation; even 
though certain protocols have been developed to remediate the problem 
[13]. As an example, in X-ray photoelectron spectroscopy, there are at 
least four different approaches to account for the background: linear, 
polynomial, Shirley, or Tougaard – based backgrounds. However, on the 
question of which one should be applied and how to do so appropriately 
in the practical application is not universally agreed upon [14,15]. 
Recently, it has been reported that the oxidation states of materials can 
be identified by studying X-ray absorption near-edge absorption spec-
troscopy data with supervised machine learning techniques, which 
reduce interference of human judgment [16]. However, insufficient 
training data might limit the extent to which the learning algorithm can 
capture the complete data structure, and it may miss weak features. 
Hence, it is an important task to develop and evaluate methods to extract 
information from the X-ray spectroscopic data, even under the influence 
of noise and/or deviation in the data pre-processing as well as limited 
knowledge of the composition of such materials or interfaces (due to 
diffusion, defects, etc.). 

The grey relational analysis (GRA) is a multi-variable statistical 
method capable of revealing correlations between multiple objects with 
limited information [17,18], which is successfully applied in a variety of 
fields, such as optimization of process parameters for electrical 
discharge machining or laser beam drilling [19–21], failure mode 
analysis [22], state-of-health estimation [23], and pattern recognition 
[24]. In general, GRA identifies the relationship between comparison 
and reference sequences by studying their geometry proximity with a 
GRA algorithm (e.g., ranking of the grey relational grade) [17], which 
can be easily implanted in a program for streamlining data analysis. 
Hence, a quantitative method based on GRA would be useful to extract 
information from X-ray spectroscopic data, which could also provide 
automated decision making in data acquisition (e.g., setting measure-
ment time or designing measurement parameters for a combinatorial 
materials library). 

To sum up, X-ray spectroscopies are widely employed to investigate 
the electronic and chemical structures of materials (e.g., μc-SiOx:H), 

which are important for understanding the underlying physics and de-
vice optimization. However, the traditional methods (e.g., LSF) for 
analyzing X-ray spectroscopic data are usually time-consuming and 
sensitive to noise or inconsistence in data pre-processing. Meanwhile, by 
comparing sequences based on their geometric proximity and similarity, 
GRA has been successfully applied in various fields to support multi- 
criteria decision making. Therefore, the objective of this study is to 
develop a novel analysis method based on GRA to extract critical in-
formation (e.g., chemical compositions) from X-ray spectroscopic data. 
A set of hard X-ray photoelectron spectroscopy (HAXPES) data in 
particular of the valence band region of μc-SiOx:H is used as a showcase 
example to evaluate the effectiveness of the proposed grey relational 
method (GRM). It is found that the results derived by GRM are more 
accurate than those derived by LSF, especially when the spectra are 
noisy or include a complex background. 

Material preparation 

p-type hydrogenated microcrystalline silicon suboxides (μc-SiOx:H) 
layers with different oxygen contents ([O] = O/(Si + O)) were deposited 
by RF (13.56 MHz) PECVD technique at 185 ◦C substrate temperature 
and a power density of 300 mWcm− 2, using a mixture of silane (SiH4), 
carbon dioxide (CO2), hydrogen (H2), and trimethylboron (TMB) diluted 
in helium gas. The thickness of the investigated layers was in the range 
between 300 and 600 nm, which significantly extends beyond a typical 
range of the structurally inhomogeneous development of the film during 
initial growth of doped silicon oxide [6]. [O] of the studied samples was 
0, 0.17, 0.25, 0.33, and 0.49, respectively – as derived by Rutherford 
backscattering spectroscopy (RBS, see Ref. [6] for details). 

Characterization methods and material properties 

The μc-SiOx:H samples were characterized by HAXPES with 2003 eV 
photons at the HiKE endstation on the KMC-1 beamline of the BESSY-II 
electron storage ring [6] focusing on the Si 2p and valence band region. 
A pass energy of 100 eV was used for the measurements, resulting in a 
total experimental resolution of approx. 0.25 eV. The binding energy 
scale was calibrated using a clean Au foil, setting the binding energy of 
the Au 4f7/2 line to 84.00 eV or the center of the Fermi edge to 0 eV. The 
curve fit analysis of the Si 2p HAXPES spectra suggests that the Si0 

oxidation state fraction is 0.81, 0.68, 0.56, 0.47, and 0.23, respectively 
[6], with increasing CO2 concentration during sample preparation. The 
detailed fit of the Si 2p additionally reveals the fractions of Si1+, Si2+, 
Si3+, and Si4+ (see Table 1 and Ref. [6] for details), with mainly the Si4+

contribution increasing at the expense of the Si0 fraction. Assuming that 
the formation of corresponding SiOx suboxides determine the Si oxida-
tion states, one can compute the oxygen content as [O]HAXPES = O/(Si +
O)) = (0 × Si0 + 0.5 × Si1+ + 1 × Si2+ + 1.5 × Si3+ + 2 × Si4+)/[(Si0 +

Si1+ + Si2+ + Si3+ + Si4+)  + (0 × Si0 + 0.5 × Si1+ + 1 × Si2+ + 1.5 ×
Si3+ + 2 × Si4+)]. The computed values are shown in Table 1. The values 
somewhat deviate from the RBS derived [O] ([O]RBS), which can be 

Table 1 
Oxygen content ([O] = O/(Si + O)) of the studied μc-SiOx:H samples derived by 
RBS [6], and the fractions of the different Si oxidation states calculated based on 
the curve fit analysis of the Si 2p HAXPES data (see Ref. [6] for details). The 
HAXPES-derived oxygen content [O]HAXPES was computed based on the Si 
oxidation states assuming the formation of respective SiOx (sub)oxides.  

RBS 
[O]RBS 

HAXPES 

Si0/ 
Sitotal 

Si1+/ 
Sitotal 

Si2+/ 
Sitotal 

Si3+/ 
Sitotal 

Si4+/ 
Sitotal 

[O]HAXPES 

0 0.81 0.03 0 0.01 0.14 0.24 
0.17 0.68 0.06 0 0.08 0.18 0.34 
0.25 0.56 0.06 0 0.07 0.30 0.43 
0.33 0.47 0.07 0 0.09 0.35 0.47 
0.49 0.23 0.07 0.10 0.10 0.49 0.56  
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explained by the different information depth of RBS and HAXPES. While 
RBS is bulk sensitive, HAXPES probes the near-surface region of the 
sample, which is significantly affected by surface contamination and 
oxidation, rationalizing [O]HAXPES > [O]RBS. 

Theoretical model 

Generally, the ranking of grey relational grades (GRG) plays a key 
role in revealing the correlation between comparison and reference se-
quences in the GRA. However, when applied to spectroscopic data, this 
ranking cannot directly provide information such as chemical compo-
sition [17], as is elaborated upon in the Supplementary document S1. 
Hence, a new algorithm was developed to calculate GRG for analyzing 
spectroscopic data of samples that consists of multiple chemical species. 
If Z0 is defined as comparison sequence (i.e., the spectrum of the studied 
sample), and Z1, Z2, …, Zn are corresponding reference sequences (i.e., 
the spectra of standard samples), which consist of N data points, the GRG 
between the comparison and the ith reference sequence is 

γ0i =

1
N

∑N
j=1

1
[Z0(j)− Zi(j) ]2+1

1[
Z0 − Zi

]2

+1

(1)  

where Z0, Zi is the average of comparison and reference sequences. If the 
differences between two sequences are small (≪1), then a Taylor 
expansion is used to simplify Eq. (1) to 

γ0i = 1+(Z0 − Zi)
2
− (Z0 − Zi)

2 (2) 

For a comparison sequence, which is a linear combination of the 
reference sequences (e.g., a sample consisting of n species), the differ-
ence between corresponding GRGs yield a linear relationship with their 
chemical composition, which is elucidated in the Supplementary docu-
ment S2. 

γ01 − γ02 = a11k1 + a12k2 + ⋯ + a1(n− 1)kn− 1 + a1n
γ01 − γ03 = a21k1 + a22k2 + ⋯ + a2(n− 1)kn− 1 + a2n

⋮
γ01 − γ0(n− 1) = a(n− 1)1k1 + a(n− 1)2k2 + ⋯ + a(n− 1)(n− 1)kn− 1 + a(n− 1)n

(3)  

where k1, k2, … kn are the chemical composition of respective species, 
and sum of them equals to one. This suggests that it is possible to derive 
the chemical composition of samples with unknown chemical compo-
sition by solving the linear equations, deriving the coefficients (e.g., a11, 
a12). 

Results and discussion 

In order to validate the proposed method, a set of simulation data 
sequences was assembled by a linear combination of reference spectra 

Z0 = k1Z1 + k2Z2 k1 + k2 = 1 (4)  

where Z1 and Z2 are reference data. In this case, they are the valence 
band HAXPES data of μc-SiOx:H with [O]RBS = 0 and 0.49, respectively. 
It is worth noting that, unlike core levels, the valence band is normally 
hard to investigate using traditional analysis methods (e.g., curve fit), 
because the features generally are broad and convoluted due to 
involvement of more delocalized valence electrons. The k1 and k2 
indicate the chemical compositions, changing from 0 to 1 in 0.1 steps. In 
this scenario, the differences between GRGs satisfy the following 
equations 

γ01 − γ02 = a11k1 + a12 (5) 

Hence, with known chemical compositions (i.e., values of k1 and k2 
from the simulation data), the corresponding coefficients (i.e., a11, a12) 
are determined, as shown in the Supplementary document S3. A linear 
fit of the differences of GRGs and known chemical compositions was 

performed to further improve accuracy of the coefficients. 
Then, a set of test data sequences is generated using different 

chemical compositions 

Z
′

0 = k
′

1Z1 + k
′

2Z2 k
′

1 + k
′

2 = 1 (6) 

The comparison between chemical compositions calculated by GRM 
and the set values (i.e., the values used to generate the test data) suggests 
that the deviation (δ, absolute difference between the set and calculated 
values) induced by the proposed model is less than 6.3 × 10− 5, as shown 
in Supplementary document S4. This indicates that the GRM possesses 
sufficient accuracy under ideal situation (e.g., without interfering 
impact from noise or data pre-processing procedures). 

However, the spectra of standard samples generally possess a better 
signal-to-noise ratio than ‘real-world’ experiments. Therefore, Poisson 
noise (P), generated by the built-in function in OriginLab, was intro-
duced into the test data (resulting in the data set T1, T2, T3, T4, and T5, 
see Fig. 1) to simulate the impact of noise on data analysis. 

ZP = Z ′

0 +P (7) 

Poisson noise is chosen because this type of noise is commonly pre-
sent in spectra recorded by detectors based on charge-coupled devices 
(CCD), which are widely used in X-ray spectroscopy measurement 
setups. As discussed in the following paragraphs, the type of noise does 
not introduce much difference on the analysis. The strength of noise in 
this study is defined as the ratio between the amplitude of noise and 
intensity of spectral signal (i.e., difference between maximum and 
minimum of the spectroscopic data). In the following discussion, the 
strength of added Poisson noise is about 10% of the intensity of a 
spectrum. 

The test data as well as the reference spectra and a typical Poisson 
noise are shown in Fig. 1. The chemical compositions derived from the 
test data calculated by GRM and via LSF are listed in Table 2. The 

Fig. 1. HAXPES valence band spectra of reference μc-SiOx:H samples with 
[O]RBS = 0 and 0.49, as well as the test data T1, T2, T3, T4, and T5. A Poisson 
noise is shown as a black line. 
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deviation (δ) between the true and calculated value using GRM increases 
(up to 2.4%) after introducing the noise; a similar effect is observed for 
the LSF approach (up to 2.3%). Hence, it is clear that the proposed 
method provides results as reliable as the traditional method, even when 
the data incorporates significant noise. Note that test data T4 is used 
below to study additional impacts on data analysis. 

The presence of noise is not the only effect that might introduce 
uncertainty in the data analysis. Most spectra will undergo data pre- 
processing, such as baseline subtraction, before any further data anal-
ysis. Such processes rely on a manually (i.e., picked by researcher) or 
automatically (i.e. calculated by a pre-defined algorithm) assigned 
baseline. Certainly, introducing an automatic mechanism in the process 
could lead to better reproducibility – if not necessarily accuracy – in data 
analysis. However, some deviation is still unavoidable due to various 
reasons, such as e.g., changes in sample alignment, fluctuation of the 
excitation source, or the presence of scattering sample surface. 

To study the impact of such deviations, a linear background was 
added into the test data. Firstly, a constant value (C) is introduced to a 
test data: 

ZC = ZP+C (8) 

The original test data T4 before and after adding a constant back-
ground (i.e., 10%, 20%, 40%, and 80% of the maximum intensity of the 
test data) is shown in Fig. 2. The chemical composition predicted by 
GRM and LSF is given in the Table 3. The GRM is evidently not sensitive 
to the added baseline-induced uncertainty at all, because the deviation 
merely changes from 1.0% for no background addition to 1.2% for an 
addition of 80% of maximum test data intensity. However, adding 
different constant backgrounds of different intensity to the data has a 
dramatic impact on the LSF-derived composition and related uncer-
tainty, which is in the worst case (i.e., the largest background added) 
more than two orders of magnitude larger than that using GRM. In this 
simple case, the increased error in the LSF procedure is of course easily 
remedied (as shown in Supplementary document S5) by including a 
variable constant background in the fitting procedure (as would 
generally be the case in real analytical setting). Nevertheless, the com-
parison demonstrates that the GRM procedure is less sensitive to devi-
ation in selecting background function. 

To better illustrate this point, a linear function was used as a back-
ground (i.e., sloping baseline): 

ZL(j) = ZP(j) + a + b × j j = 1, 2,⋯N (9)  

where a and b are the interception and slope of the linear function, 
respectively. The original test data T4 is combined with a linear baseline 
with different slopes (b = 0.0005, 0.0010, 0.0020, and 0.0040), shown 
in Fig. 3. The error of the chemical compositions predicted by GRM, 
shown in the Table 4, increases with increasing slope (e.g., for b =
0.0040 the error is around 39%), but is always lower than that of LSF. 
Note that, in this LSF procedure, a constant is also included, as discussed 
in Supplementary document S5, to simulate the real analytical practice. 
Hence, in contrast to adding a constant background (which has no effect 
on GRM), here the GRM results are significantly influenced. It is easy to 

notice miscalculation of the baseline when the slope is larger than 
0.0005. In this circumstance, the error induced by the GRM is 4.1%, 
while the LSF leads to an error of 8.1%. 

Evidently, if the data sequence Z incorporates a function L, the 
change of GRGs with and without L is 

Δγ0i = 2
[
L
(

Z − Zi

)
− L(Z − Zi)

]
+
(

L2
− L2

)
(10)  

which is elaborated in the Supplementary document S6. Hence, the 
change of difference between two GRGs is 

Δmi = 2
[
L
(

Zi − Zm

)
− L(Zi − Zm)

]
(11) 

If the function L is a constant, theoretically, the changes of both GRGs 

Table 2 
Set chemical composition parameters (k′1, i.e. fraction of SiOx with [O]RBS = 0, 
and k′2, i.e. fraction of SiOx with [O]RBS 

= 0.49) for the generated test data 
T1–T5 and calculated composition derived by GRM compared to that obtained 
by LSF.  

Test data   GRM LSF 

Set k′
1 Set k′

2 Calc. k′
1 δ Calc. k′

1 δ 

T1 0.03 0.97 0.05 2.4% 0.05 2.3% 
T2 0.76 0.24 0.76 0.4% 0.77 0.5% 
T3 0.14 0.86 0.15 1.5% 0.15 0.8% 
T4 0.44 0.56 0.45 1.0% 0.44 0.4% 
T5 0.24 0.76 0.26 1.8% 0.25 0.8%  

Fig. 2. Impact of the addition of constant backgrounds to the spectral shape of 
the calculated HAXPES valence band spectra (test data T4). The added back-
ground is a constant, being proportional (e.g., 10%) to the maximum intensity 
of test data T4. 

Table 3 
Chemical composition derived by GRM for test data T4 to which different con-
stant baselines have been added, comparing with the results obtained by LSF. 
The added constant is proportional (e.g., 10%) to the maximum intensity of test 
data T4.  

Test data Set k′
1 GRM LSF 

Calc. k′
1 δ Calc. k′

1 δ 

T4 0.44 0.45 1.0% 0.44 0.4% 
+10% max 0.44 0.45 1.0% 0.65 21% 
+20% max 0.44 0.45 1.0% 0.85 41% 
+40% max 0.44 0.45 1.0% 1.26 82% 
+80% max 0.44 0.45 1.2% 2.07 163%  
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and their differences will be zero. This explains why the proposed 
method yields small and relatively stable error in analyzing data with a 
shifted baseline. Since the average of a noise signal is close to zero, the 
GRM is unsurprisingly not sensitive to it (i.e., not correlating to the 
strength and type of noise). On the other hand, if the function L is not a 
constant, the changes of GRGs and their differences depend greatly on 
the function L and the reference sequences. Nevertheless, the proposed 
GRM method performs better than the LSF in limiting the analysis error, 
when there is inconsistency in data pre-processing. 

Finally, the HAXPES valence band spectra of μc-SiOx:H with different 
oxygen content, as shown in Fig. 4, are analyzed by GRM. The valence 
band is composed of contributions from Si and O electrons: feature A (at 
~10 eV) is attributed to Si 3s, B (~7 eV) to hybridized Si 3s – O 2p, C 
(~4 eV) to Si 3p, D (~14 eV) to hybridized O 2p – Si 3p, and E (~9 eV) to 
hybridized O 2p – Si 3s derived states [25,26]. The relative spectral 
intensity of the Si-related features A–C in the spectra of the μc-SiOx:H 

samples gradually decreases, while the O-related features D and E in-
crease with increasing oxygen content. Even though the spectra of μc- 
SiOx:H with [O]RBS = 0 and 0.49 are quite distinct, they do not represent 
pure phases. This is most apparent inspecting the spectra of the Si 2p 
core level (see Supplementary document S7). The fit analysis reveals 
that multiple Voigt functions representing different Si oxidation states 
are required to result in a reasonably description of the Si 2p data. While 
only 81% of the silicon in the μc-SiOx:H sample with [O]RBS = 0 is 
present as Si0, in the μc-SiOx:H sample with [O]RBS = 0.49, 23% of the 
silicon is present in the form of Si0 [6] (see also Table 1). The chemical 
composition parameters (i.e., k′

1 and k′
2) of μc-SiOx:H samples are 

derived by GRM and LSF, using the HAXPES valence band spectra of μc- 
SiOx:H samples with [O]RBS = 0 and 0.49 as reference sequences. After 
taking the composition of reference data (the results of curve fit in 
Ref. [6]) into account, the Si0 state fractions of the μc-SiOx:H samples are 
computed (i.e., 0.81 × k′

1 + 0.23 × k′
2) and shown in Table 5. The re-

sults agree with those of curve fit in a reasonable margin of uncertainty. 

Fig. 3. Impact of the addition of linear backgrounds with different slopes (b) on 
the spectral shape of the calculated HAXPES valence band spectra (test 
data T4). 

Table 4 
Chemical composition derived by GRM for test data T4 to which linear baselines 
with different slopes (b) have been added, comparing with the results obtained 
by LSF.  

Test data Set k′
1 GRM LSF 

Calc k′
1 δ Calc. k′

1 δ 

T4 0.44 0.45 1.0% 0.46 2.2% 
b = 0.0005 0.44 0.40 4.1% 0.52 8.1% 
b = 0.0010 0.44 0.35 9.2% 0.58 14% 
b = 0.0020 0.44 0.25 19% 0.70 26% 
b = 0.0040 0.44 0.05 39% 0.94 50%  

Fig. 4. Experimental HAXPES valence band spectra of μc-SiOx:H samples (with 
[O]RBS = 0, 0.17, 0.25, 0.33, and 0.49). Note that the spectra are offset verti-
cally for easier comparison. 

Table 5 
The fraction of Si0 oxidation state calculated based on the curve fit analysis of 
the Si 2p HAXPES data (see Ref. [6] for details), as well as the results obtained by 
GRM and LSF methods, based on the HAXPES valence band spectra.  

Curve fit GRM LSF 

Si0 Calc. k′
1 Calc. k′

2 Si0 Calc. k′
1 Calc. k′

2 Si0 

0.81 1.00 0.00 0.81 1.00 0.00 0.81 
0.68 0.82 0.18 0.70 0.82 0.18 0.71 
0.56 0.57 0.43 0.56 0.57 0.43 0.56 
0.47 0.47 0.53 0.50 0.47 0.53 0.50 
0.23 0.00 1.00 0.23 0.00 1.00 0.23  
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Note, curve fitting is a generally time-consuming process, but could 
yield more information (e.g., different full width at half maximum due to 
inhomogeneous broadening [6]) from the data analysis. 

In the Supplementary document S7, the Si 2p HAXPES spectra of μc- 
SiOx:H is analyzed using the same method, while the Si 2p HAXPES data 
of μc-SiOx:H with [O]RBS = 0 and 0.49 are used as references for Si and Si 
oxides, respectively. There are close linear correlations between the 
results derived by the GRM, the LSF, the curve fit, and the RBS, as well. 
For example, the μc-SiOx:H sample with [O]RBS = 0.17 consists of 70% 
and 67% of Si0, respectively, determined by GRM using valence band 
and Si 2p HAXPES data, while the curve fit revealing a 68% of Si0 

oxidation state. This suggests that the proposed method can effectively 
analyze HAXPES data and reveal the critical information (e.g., chemical 
composition), without sacrificing much accuracy. 

Conclusion 

A method based on GRA (i.e., GRM) is developed to analyze the 
correlation between comparison and reference spectra, and extract 
critical information (i.e., the chemical composition) from X-ray spec-
troscopic data. The typical procedures are summarized here: first, GRGs 
are computed for a set of data with known chemical compositions; 
second, the differences of the GRGs are used to derive the coefficients (e. 
g., a11, a12) for the linear equation, Eq. (3); third, unknown chemical 
composition is extracted from a spectrum using the linear equations, Eq. 
(3), after calculating GRGs for the spectrum. A Poisson noise and various 
linear functions were intentionally introduced to the valence band of μc- 
SiOx:H to simulate noise and errors commonly observed in analysis of X- 
ray spectroscopic data. A comparison of the results obtained by GRM 
and LSF suggests that GRM is reliable in analyzing spectra with poor 
signal-to-noise ratio, and is much less sensitive to the deviation in data 
pre-processing, such as inconsistence in baseline shifting and correction. 
Furthermore, the results acquired by GRM from the valence band agree 
well with those obtained by curve fit of Si 2p HAXPES spectra and the 
information gained by other experimental techniques (i.e. RBS). This 
indicates that the proposed method is effective for analyzing X-ray 
spectroscopic data, with less demanding in personal experience and 
great potential for automatic data analysis of complex material systems. 
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