161 research outputs found

    Semi-automatic Data Enhancement for Document-Level Relation Extraction with Distant Supervision from Large Language Models

    Full text link
    Document-level Relation Extraction (DocRE), which aims to extract relations from a long context, is a critical challenge in achieving fine-grained structural comprehension and generating interpretable document representations. Inspired by recent advances in in-context learning capabilities emergent from large language models (LLMs), such as ChatGPT, we aim to design an automated annotation method for DocRE with minimum human effort. Unfortunately, vanilla in-context learning is infeasible for document-level relation extraction due to the plenty of predefined fine-grained relation types and the uncontrolled generations of LLMs. To tackle this issue, we propose a method integrating a large language model (LLM) and a natural language inference (NLI) module to generate relation triples, thereby augmenting document-level relation datasets. We demonstrate the effectiveness of our approach by introducing an enhanced dataset known as DocGNRE, which excels in re-annotating numerous long-tail relation types. We are confident that our method holds the potential for broader applications in domain-specific relation type definitions and offers tangible benefits in advancing generalized language semantic comprehension

    Adult Chinese Spanish L2ers’ acquisition of phi-agreement and temporal concord: The role of morphosyntactic features and adverb/subject-verb distance

    Get PDF
    PUBLISHED 22 December 2022While phi-agreement and concord are suggested to differ in nature during the first language (L1) acquisition, the acquisition of adverb-verb TC and SV person/number agreement by Chinese Spanish second language (L2) learners has only received limited attention. The current study examined morphosyntactic processing by advanced Chinese Spanish L2 learners (L2ers), whose L1 lacks the explicit morphological marking of tense and phi-agreement.This research was supported by National Social Science Fund of China (21FYYB011) and Young Scholar Incubation Plan of Xizang Minzu University (20MDX01)

    DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning

    Full text link
    Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations and is essential for the development of communicative social agents. In this paper, we introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding. Compared with previous works that treat different figurative expressions (e.g. metaphor, sarcasm) as individual tasks, DiPlomat provides a cohesive framework towards general pragmatic understanding. Our dataset is created through the utilization of Amazon Mechanical Turk ( AMT ), resulting in a total of 4, 177 multi-turn dialogues. In conjunction with the dataset, we propose two tasks, Pragmatic Identification and Reasoning (PIR) and Conversational Question Answering (CQA). Experimental results with state-of-the-art (SOTA) neural architectures reveal several significant findings: 1) large language models ( LLMs) exhibit poor performance in tackling this subjective domain; 2) comprehensive comprehension of context emerges as a critical factor for establishing benign human-machine interactions; 3) current models defect in the application of pragmatic reasoning. As a result, we call on more attention to improve the ability of context understanding, reasoning, and implied meaning modeling

    MoviePuzzle: Visual Narrative Reasoning through Multimodal Order Learning

    Full text link
    We introduce MoviePuzzle, a novel challenge that targets visual narrative reasoning and holistic movie understanding. Despite the notable progress that has been witnessed in the realm of video understanding, most prior works fail to present tasks and models to address holistic video understanding and the innate visual narrative structures existing in long-form videos. To tackle this quandary, we put forth MoviePuzzle task that amplifies the temporal feature learning and structure learning of video models by reshuffling the shot, frame, and clip layers of movie segments in the presence of video-dialogue information. We start by establishing a carefully refined dataset based on MovieNet by dissecting movies into hierarchical layers and randomly permuting the orders. Besides benchmarking the MoviePuzzle with prior arts on movie understanding, we devise a Hierarchical Contrastive Movie Clustering (HCMC) model that considers the underlying structure and visual semantic orders for movie reordering. Specifically, through a pairwise and contrastive learning approach, we train models to predict the correct order of each layer. This equips them with the knack for deciphering the visual narrative structure of movies and handling the disorder lurking in video data. Experiments show that our approach outperforms existing state-of-the-art methods on the \MoviePuzzle benchmark, underscoring its efficacy

    Energy-Based Generative Cooperative Saliency Prediction

    Full text link
    Conventional saliency prediction models typically learn a deterministic mapping from images to the corresponding ground truth saliency maps. In this paper, we study the saliency prediction problem from the perspective of generative models by learning a conditional probability distribution over saliency maps given an image, and treating the prediction as a sampling process. Specifically, we propose a generative cooperative saliency prediction framework based on the generative cooperative networks, where a conditional latent variable model and a conditional energy-based model are jointly trained to predict saliency in a cooperative manner. We call our model the SalCoopNets. The latent variable model serves as a fast but coarse predictor to efficiently produce an initial prediction, which is then refined by the iterative Langevin revision of the energy-based model that serves as a fine predictor. Such a coarse-to-fine cooperative saliency prediction strategy offers the best of both worlds. Moreover, we generalize our framework to the scenario of weakly supervised saliency prediction, where saliency annotation of training images is partially observed, by proposing a cooperative learning while recovering strategy. Lastly, we show that the learned energy function can serve as a refinement module that can refine the results of other pre-trained saliency prediction models. Experimental results show that our generative model can achieve state-of-the-art performance. Our code is publicly available at: \url{https://github.com/JingZhang617/SalCoopNets}

    Shuo Wen Jie Zi: Rethinking Dictionaries and Glyphs for Chinese Language Pre-training

    Full text link
    We introduce CDBERT, a new learning paradigm that enhances the semantics understanding ability of the Chinese PLMs with dictionary knowledge and structure of Chinese characters. We name the two core modules of CDBERT as Shuowen and Jiezi, where Shuowen refers to the process of retrieving the most appropriate meaning from Chinese dictionaries and Jiezi refers to the process of enhancing characters' glyph representations with structure understanding. To facilitate dictionary understanding, we propose three pre-training tasks, i.e., Masked Entry Modeling, Contrastive Learning for Synonym and Antonym, and Example Learning. We evaluate our method on both modern Chinese understanding benchmark CLUE and ancient Chinese benchmark CCLUE. Moreover, we propose a new polysemy discrimination task PolyMRC based on the collected dictionary of ancient Chinese. Our paradigm demonstrates consistent improvements on previous Chinese PLMs across all tasks. Moreover, our approach yields significant boosting on few-shot setting of ancient Chinese understanding.Comment: To appear at ACL 2023 Finding
    • …
    corecore