357 research outputs found

    Steady-state bifurcation of FHN-type oscillator on a square domain

    Get PDF
    The Turing patterns of reaction-diffusion equations defined over a square region are more complex because of the D4-symmetry of the spatial region. This leads to the occurrence of multiple equivariant Turing bifurcations. In this paper, taking the FHN model as an example, we give a explicit calculation formula of normal form for the simple and double Turing bifurcation of the reaction-diffusion equation with Dirichlet boundary conditions and defined on a square space, and we also obtain a method for the calculation of the existence of spatially inhomogeneous steady-state solutions. This paper provides a theoretical basis for exploring and predicting the pattern formation of spatial multimode interaction

    Alice Benchmarks: Connecting Real World Object Re-Identification with the Synthetic

    Full text link
    For object re-identification (re-ID), learning from synthetic data has become a promising strategy to cheaply acquire large-scale annotated datasets and effective models, with few privacy concerns. Many interesting research problems arise from this strategy, e.g., how to reduce the domain gap between synthetic source and real-world target. To facilitate developing more new approaches in learning from synthetic data, we introduce the Alice benchmarks, large-scale datasets providing benchmarks as well as evaluation protocols to the research community. Within the Alice benchmarks, two object re-ID tasks are offered: person and vehicle re-ID. We collected and annotated two challenging real-world target datasets: AlicePerson and AliceVehicle, captured under various illuminations, image resolutions, etc. As an important feature of our real target, the clusterability of its training set is not manually guaranteed to make it closer to a real domain adaptation test scenario. Correspondingly, we reuse existing PersonX and VehicleX as synthetic source domains. The primary goal is to train models from synthetic data that can work effectively in the real world. In this paper, we detail the settings of Alice benchmarks, provide an analysis of existing commonly-used domain adaptation methods, and discuss some interesting future directions. An online server will be set up for the community to evaluate methods conveniently and fairly.Comment: 9 pages, 4 figures, 4 table

    Biological Factor Regulatory Neural Network

    Full text link
    Genes are fundamental for analyzing biological systems and many recent works proposed to utilize gene expression for various biological tasks by deep learning models. Despite their promising performance, it is hard for deep neural networks to provide biological insights for humans due to their black-box nature. Recently, some works integrated biological knowledge with neural networks to improve the transparency and performance of their models. However, these methods can only incorporate partial biological knowledge, leading to suboptimal performance. In this paper, we propose the Biological Factor Regulatory Neural Network (BFReg-NN), a generic framework to model relations among biological factors in cell systems. BFReg-NN starts from gene expression data and is capable of merging most existing biological knowledge into the model, including the regulatory relations among genes or proteins (e.g., gene regulatory networks (GRN), protein-protein interaction networks (PPI)) and the hierarchical relations among genes, proteins and pathways (e.g., several genes/proteins are contained in a pathway). Moreover, BFReg-NN also has the ability to provide new biologically meaningful insights because of its white-box characteristics. Experimental results on different gene expression-based tasks verify the superiority of BFReg-NN compared with baselines. Our case studies also show that the key insights found by BFReg-NN are consistent with the biological literature
    • …
    corecore