1,378 research outputs found

    Security Analysis of Pairing-based Cryptography

    Full text link
    Recent progress in number field sieve (NFS) has shaken the security of Pairing-based Cryptography. For the discrete logarithm problem (DLP) in finite field, we present the first systematic review of the NFS algorithms from three perspectives: the degree α\alpha, constant cc, and hidden constant o(1)o(1) in the asymptotic complexity LQ(α,c)L_Q\left(\alpha,c\right) and indicate that further research is required to optimize the hidden constant. Using the special extended tower NFS algorithm, we conduct a thorough security evaluation for all the existing standardized PF curves as well as several commonly utilized curves, which reveals that the BN256 curves recommended by the SM9 and the previous ISO/IEC standard exhibit only 99.92 bits of security, significantly lower than the intended 128-bit level. In addition, we comprehensively analyze the security and efficiency of BN, BLS, and KSS curves for different security levels. Our analysis suggests that the BN curve exhibits superior efficiency for security strength below approximately 105 bit. For a 128-bit security level, BLS12 and BLS24 curves are the optimal choices, while the BLS24 curve offers the best efficiency for security levels of 160bit, 192bit, and 256bit.Comment: 8 figures, 8 tables, 5121 word

    Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture

    Get PDF
    For long distance orbital angular momentum (OAM) based transmission, the conventional whole beam receiving scheme encounters the difficulty of large aperture due to the divergence of OAM beams. We propose a novel partial receiving scheme, using a restricted angular aperture to receive and demultiplex multi-OAM-mode beams. The scheme is theoretically analyzed to show that a regularly spaced OAM mode set remain orthogonal and therefore can be de-multiplexed. Experiments have been carried out to verify the feasibility. This partial receiving scheme can serve as an effective method with both space and cost savings for the OAM communications. It is applicable to both free space OAM optical communications and radio frequency (RF) OAM communications

    N-Type Oxide Thermoelectrics Via Visual Search Strategies

    Full text link
    We discuss and present search strategies for finding new thermoelectric compositions based on first principles electronic structure and transport calculations. We illustrate them by application to a search for potential n-type oxide thermoelectric materials. This includes a screen based on visualization of electronic energy isosurfaces. We report compounds that show potential as thermoelectric materials along with detailed properties, including SrTiO3, which is a known thermoelectric, and appropriately doped KNbO3 and rutile TiO2

    DEVELOPMENT OF NOVEL METHODS TO MINIMIZE THE IMPACT OF SEQUENCING ERRORS IN THE NEXT-GENERATION SEQUENCING DATA ANALYSIS

    Get PDF
    Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage
    • …
    corecore