97 research outputs found
Expression pattern and polymorphism of three microsatellite markers in the porcine CA3 gene
Carbonic anhydrase III (CA3) is an abundant muscle protein characteristic of adult type-1, slow-twitch, muscle fibres. In order to further understand the functions of the porcine CA3 protein in muscle, the temporal and spatial distributions of its gene product were analysed and the association between the presence of specific polymorphisms and carcass traits in the pig was also examined. Real-time PCR revealed that the CA3 mRNA expression showed no differences with age in skeletal muscles from Yorkshire pigs at postnatal day-1, month-2, and month-4. We provide the first evidence that CA3 is differentially expressed in the skeletal muscle of Yorkshire and Meishan pig breeds. In addition, the whole pig genomic DNA sequence of CA3 was investigated and shown to contain seven exons and six introns. Comparative sequencing of the gene from three pig breeds revealed the existence of microsatellite SJ160 in intron 5 and microsatellite SJ158 and a novel microsatellite marker that includes a tandem repeat of (TC)n in intron 4. We also determined the allele number and frequencies of the three loci in seven pig breeds and found that they are low polymorphic microsatellite markers. Statistical analysis showed that the CA3 microsatellite polymorphism was associated with dressing percentage, internal fat rate, carcass length, rib number and backfat thickness in the pig
Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs
Climate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 mu m) and larger sized plankton (microplankton; 40-200 mu m), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels
Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs
Climate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (\u3c 40 μm) and larger sized plankton (microplankton; 40–200 μm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels
A Prospective Study of the Surgical Outcome of Simple Uvulopalatopharyngoplasty (UPPP), UPPP Combined With Genioglossus Advancement or Tongue Base Advancement for Obstructive Sleep Apnea Hypopnea Syndrome Patients With Multilevel Obstruction
ObjectivesTo investigate the surgical outcomes of different uvulopalatopharyngoplasty (UPPP).Methods All subjects underwent overnight polysomnography and were evaluated using the Epworth sleepiness scale (ESS), the Quebec sleep questionnaire and the snoring scale at the baseline and 3 and 12 months following operation. The primary endpoint was the overall effective rate representing the sum of the surgical success rate and effective rate.ResultsThe overall effective rate at 12 months post surgery was 55.6% for simple UPPP, 95.8% for UPPP+GA, and 92.3% for UPPP+TBA. The surgical success rate at 3 and 12 months postoperation for UPPP+GA or UPPP+TBA was significantly higher than simple UPPP (P<0.05). Marked improvement was observed in all patients in the snoring scale score and the ESS score 3 and 12 months following surgery compared to the baseline (P<0.05 in all).ConclusionUPPP, UPPP+GA, and UPPP+TBA are all effective in improving the surgical outcome of obstructive sleep apnea hypopnea syndrome (OSAHS) patients with multilevel obstruction. UPPP+TBA appears to be the most effective in treating OSAHS patients
The feasibility and efficiency for constructing arteriovenous fistula with <2 mm vein—a systematic review and meta-analysis
BackgroundAutogenous arteriovenous fistula (AVF) is an efficient hemodialysis access for patients with end-stage kidney disease (ESKD). The specific threshold of vein diameter still not reached a consensus.MethodWe conducted a comprehensive search in PubMed, Embase, and Web of Science databases for articles which comparing the treatment outcomes of AVF with 2 mm as vein diameter threshold. Fixed and random effect model were used for synthesis of results. Subgroup analysis was designed to assess the risk of bias.ResultEight high-quality articles were included finally. Among a total of 1,075 patients (675 males and 400 females), 227 and 809 patients possessed <2 mm and ≥2 mm vein respectively. Apart from gender and coronary artery disease (P < 0.05), there was no significant difference in age, diabetes, hypertension or radial artery between maturation and non-maturation groups. The functional maturation rate was lower in patients with <2 mm vein according to fixed effect model [OR = 0.19, 95% CI (0.12, 0.30), P < 0.01]. There was no significant difference in primary [OR = 0.63, 95% CI (0.12, 3.25), P = 0.58] or cumulative patency rates [OR = 0.40, 95% CI (0.13, 1.19), P = 0.10].ConclusionVein diameter less than 2 mm has a negative impact on the functional maturation rate of AVF, while it does not affect the primary and cumulative patency rates (12 months)
Mouse Model Established by Early Renal Transplantation After Skin Allograft Sensitization Mimics Clinical Antibody-Mediated Rejection
Antibody-mediated rejection (AMR) is the main barrier to renal graft survival, and mouse renal AMR models are important to study this process. Current mouse models are established by priming the recipient to donor skin for over 7 days before kidney transplantation. The robustness of AMR in these cases is too strong to mimic clinical AMR and it is unclear why altering the priming times ranging from 7 to 91 days fails to reduce the AMR potency in these models. In the present study, we found that the donor-recipient combination and skin graft size were determinants of donor-specific antibody (DSA) development patterns after skin transplantation. DSA-IgG was sustained for over 100 days after skin challenge, accounting for an identical AMR robustness upon different skin priming times over 7 days. However, decreasing the skin priming time within 7 days attenuated the robustness of subsequent renal allograft AMR in C3H to Balb/c mice. Four-day skin priming guaranteed that recipients develop acute renal AMR mixed with a high ratio of graft-infiltrating macrophages, renal grafts survived for a mean of 6.4 ± 2.1 days, characterized by typical AMR histological changes, such as glomerulitis, peritubular capillary (PTC) dilation, and capillaritis, deposition of IgG and C3d in PTCs, but less prevalence of microthrombus, whereas the cellular rejection histological change of tubulitis was absent to mild. With this scheme, we also found that the renal AMR model can be developed using common mouse strains such as C57BL/6 and Balb/c, with mean prolonged renal graft survival times of 14.4 ± 5.0 days. Finally, we proved that donor-matched skin challenge after kidney transplantation did not strongly affect DSA development and kidney graft outcome. These findings may facilitate an understanding and establishment of mouse renal allograft AMR models and promote AMR-associated studies
Laryngeal Reinnervation Using Ansa Cervicalis for Thyroid Surgery-Related Unilateral Vocal Fold Paralysis: A Long-Term Outcome Analysis of 237 Cases
To evaluate the long-term efficacy of delayed laryngeal reinnervation using the main branch of the ansa cervicalis in treatment of unilateral vocal fold paralysis (UVFP) caused by thyroid surgery.UVFP remains a serious complication of thyroid surgery. Up to now, a completely satisfactory surgical treatment of UVFP has been elusive.From Jan. 1996 to Jan. 2008, a total of 237 UVFP patients who underwent ansa cervicalis main branch-to-recurrent laryngeal nerve (RLN) anastomosis were enrolled as UVFP group; another 237 age- and gender-matched normal subjects served as control group. Videostroboscopy, vocal function assessment (acoustic analysis, perceptual evaluation and maximum phonation time), and electromyography were performed preoperatively and postoperatively. The mean follow-up period was 5.2±2.7 years, ranging from 2 to 12 years.>0.05, respectively). Postoperative laryngeal electromyography confirmed successful reinnervation of laryngeal muscle.Delayed laryngeal reinnervation with the main branch of ansa cervicalis is a feasible and effective approach for treatment of thyroid surgery-related UVFP; it can restore the physiological laryngeal phonatory function to the normal or a nearly normal voice quality
Probing the fractional quantum Hall phases in valley-layer locked bilayer MoS
Semiconducting transition-metal dichalcogenides (TMDs) exhibit high mobility,
strong spin-orbit coupling, and large effective masses, which simultaneously
leads to a rich wealth of Landau quantizations and inherently strong electronic
interactions. However, in spite of their extensively explored Landau levels
(LL) structure, probing electron correlations in the fractionally filled LL
regime has not been possible due to the difficulty of reaching the quantum
limit. Here, we report evidence for fractional quantum Hall (FQH) states at
filling fractions 4/5 and 2/5 in the lowest LL of bilayer MoS, manifested
in fractionally quantized transverse conductance plateaus accompanied by
longitudinal resistance minima. We further show that the observed FQH states
sensitively depend on the dielectric and gate screening of the Coulomb
interactions. Our findings establish a new FQH experimental platform which are
a scarce resource: an intrinsic semiconducting high mobility electron gas,
whose electronic interactions in the FQH regime are in principle tunable by
Coulomb-screening engineering, and as such, could be the missing link between
atomically thin graphene and semiconducting quantum wells.Comment: 10 pages, 4 figure
Licorice extract inhibits the cGAS-STING pathway and protects against non-alcoholic steatohepatitis
Background: Inflammation and fibrosis are typical symptoms of non-alcoholic steatohepatitis (NASH), which is one of the most common chronic liver diseases. The cGAS-STING signaling pathway has been implicated in the progression of NASH, and targeting this pathway may represent a new therapeutic strategy. Licorice is a widely used herb with anti-inflammatory and liver-protective properties. In this study, we assessed the effect of licorice extract on the cGAS-STING pathway.Methods: Bone marrow-derived macrophages (BMDMs) were treated with licorice extract and then stimulated with HT-DNA, 2'3'-cGAMP, or other agonists to activate the cGAS-STING pathway. Quantitative real-time PCR and western blot were conducted to analyze whether licorice extract could affect the cGAS-STING pathway. Methionine and choline-deficient diet (MCD) was used to induce NASH in mice, which were treated with licorice extract (500 mg/kg) by gavage and/or c-176 (15 mg/kg) by intraperitoneal injection every 2 days. After 6 weeks of treatment, histological analysis of liver tissue was performed, along with measurements of plasma biochemical parameters.Results: Licorice extract inhibits cGAS-STING pathway activation. Mechanistically, it might function by inhibiting the oligomerization of STING. Treatment with licorice extract reduced inflammation and fibrosis in MCD diet-induced NASH mice models. Furthermore, we found that the therapeutic effect of combination treatment with licorice extract and C-176 (STING inhibitor) on the pathology and fibrosis of MCD diet-induced NASH models was similar to that of licorice extract or C-176 administered alone.Conclusion: Licorice extract can inhibit the cGAS-STING pathway and improve hepatic inflammation and fibrosis in NASH mice models. It strongly suggests that licorice extract may be a candidate therapeutic for NASH
- …