94 research outputs found

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p

    Changing effects of energy and water on the richness distribution pattern of the Quercus genus in China

    Get PDF
    Climate varies along geographic gradients, causing spatial variations in the effects of energy and water on species richness and the explanatory power of different climatic factors. Species of the Quercus genus are important tree species in China with high ecological and socioeconomic value. To detect whether the effects of energy and water on species richness change along climatic gradients, this study built geographically weighted regression models based on species richness and climatic data. Variation partition analysis and hierarchical partitioning analysis were used to further explore the main climatic factors shaping the richness distribution pattern of Quercus in China. The results showed that Quercus species were mainly distributed in mountainous areas of southwestern China. Both energy and water were associated with species richness, with global slopes of 0.17 and 0.14, respectively. The effects of energy and water on species richness gradually increased as energy and water in the environment decreased. The interaction between energy and water altered the effect of energy, and in arid regions, the effects of energy and water were relatively stronger. Moreover, energy explained more variation in species richness in both the entire study area (11.5%) and different climate regions (up to 19.4%). The min temperature of coldest month was the main climatic variable forming the richness distribution pattern of Quercus in China. In conclusion, cold and drought are the critical climatic factors limiting the species richness of Quercus, and climate warming will have a greater impact in arid regions. These findings are important for understanding the biogeographic characteristics of Quercus and conserving biodiversity in China

    Opposing associations of Internet Use Disorder symptom domains with structural and functional organization of the striatum: A dimensional neuroimaging approach

    Get PDF
    Background: Accumulating evidence suggests brain structural and functional alterations in Internet Use Disorder (IUD). However, conclusions are strongly limited due to the retrospective case-control design of the studies, small samples, and the focus on general rather than symptom-specific approaches. Methods: We here employed a dimensional multi-methodical MRI-neuroimaging design in a final sample of n 5 203 subjects to examine associations between levels of IUD and its symptom-dimensions (loss of control/time management, craving/social problems) with brain structure, resting state and taskbased (pain empathy, affective go/no-go) brain function. Results: Although the present sample covered the entire range of IUD, including normal, problematic as well as pathological levels, general IUD symptom load was not associated with brain structural or functional alterations. However, the symptom-dimensions exhibited opposing associations with the intrinsic and structural organization of the brain, such that loss of control/time management exhibited negative associations with intrinsic striatal networks and hippocampal volume, while craving/social problems exhibited a positive association with intrinsic striatal networks and caudate volume. Conclusions: Our findings provided the first evidence for IUD symptom-domain specific associations with progressive alterations in the intrinsic structural and functional organization of the brain, particularly of striatal systems involved in reward, habitual and cognitive control processes

    Coxsackievirus A6 Induces Cell Cycle Arrest in G0/G1 Phase for Viral Production

    Get PDF
    Recent epidemiological data indicate that outbreaks of hand, foot, and mouth disease (HFMD), which can be categorized according to its clinical symptoms as typical or atypical, have markedly increased worldwide. A primary causative agent for typical HFMD outbreaks, enterovirus 71 (EV71), has been shown to manipulate the cell cycle in S phase for own replication; however, it is not clear whether coxsackievirus (CVA6), the main agent for atypical HFMD, also regulates the host cell cycle. In this study, we demonstrate for the first time that CVA6 infection arrests the host cell cycle in G0/G1-phase. Furthermore, synchronization in G0/G1 phase, but not S phase or G2/M phase, promotes viral production. To investigate the mechanism of cell cycle arrest induced by CVA6 infection, we analyzed cell cycle progression after cell cycle synchronization at G0/G1 or G2/M. Our results demonstrate that CVA6 infection promotes G0/G1 phase entry from G2/M phase, and inhibits G0/G1 exit into S phase. In line with its role to arrest cells in G0/G1 phase, the expression of cyclinD1, CDK4, cyclinE1, CDK2, cyclinB1, CDK1, P53, P21, and P16 is regulated by CVA6. Finally, the non-structural proteins of CVA6, RNA-dependent RNA polymerase 3D and protease 3C , are demonstrated to be responsible for the G0/G1-phase arrest. These findings suggest that CVA6 infection arrested cell cycle in G0/G1-phase via non-structural proteins 3D and 3C, which may provide favorable environments for virus production

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Spatial patterns of photosynthetic characteristics and leaf physical traits of plants in the Loess Plateau of China

    No full text
    The spatial patterns of photosynthetic characteristics and leaf physical traits of 171 plants belonging to nine life-forms or functional groups (trees, shrubs, herbs, evergreen trees, deciduous trees, C-3 and C-4 herbaceous plants, leguminous and non-leguminous species) and their relationships with environmental factors in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi and Shenmu, ranging from south to north in the Loess Plateau of China were studied. The results showed that the leaf light-saturated photosynthetic rate (P-max), photosynthetic nitrogen use efficiency (PNUE), chlorophyll content (Chl), and leaf mass per area (LMA) of all the plants in the Loess Plateau varied significantly among three life-form groups, i.e., trees, shrubs and herbs, and two groups, i.e., evergreen trees and deciduous trees, but leaf nitrogen content differed little among different life-form groups. For the 171 plants in the Loess Plateau, leaf P-max was positively correlated with PNUE. The leaf nitrogen content per unit area (N-area) was positively correlated but Chl was negatively correlated with the LMA. When controlling the LMA, the N-area was positively correlated with the Chl (partial r = 0.20, P &lt; 0.05). With regard to relationships between photosynthetic characteristics and leaf physical traits, the P-max was positively correlated with N (area), while the PNUE was positively correlated with the Chl and negatively correlated with the N-area and LMA. For all the species in the Loess Plateau, the PNUE was negatively correlated with the latitude and annual solar radiation (ASR), but positively correlated with the mean annual rainfall (MAR) and mean annual temperature (MAT). With regard to the leaf physical traits, the leaf Chl was negatively correlated with the latitude and ASR, but positively correlated with the MAR and MAT. However, the N-area and LMA were positively correlated with the latitude and ASR, but negatively correlated with the MAR and MAT. In general, leaf N-area and LMA increased, while PNUE and Chl decreased with increases in the latitude and ASR and decreases in MAR and MAT

    The delta C-13 changes in four plant species of the Loess Plateau over the last 70 years

    No full text
    The relative abundance of carbon isotope (delta C-13) was measured in four C-3 species (Sophora viccifolia. Quercus liaotungensis. Ostryopsis davidiana and Zizyphus jujuba var. spinosa) of the Loess Plateau in China from the 1930's to 2002. The results showed that the delta C-13 values in the four species varied from -25.05 parts per thousand to -29.75 parts per thousand with their average at -27.04 parts per thousand. A decrease in the delta C-13 value with time was found in all the four species, which indicating that the water use efficiencies (WUEs) of all the measured species declined during 70 years. However. the decrease in delta C-13 value differed among the four species with its significant decreases measured in two of the species, Sophora viciifolia and Quercus liaotungensis, its relatively significant decrease found in Ostryopsis davidiana, and its slight decrease appearing in Zizyphus,jujuba var. spinosa. in the delta C-13 values in the four species decreased by 14.65 parts per thousand, 14.46 parts per thousand, 11.99 parts per thousand and 2.44 parts per thousand, respectively. The different species were shown to have different sensitivities to climatic change, and Zizyphus jujuba var. spinosa was found to be the most drought-tolerant species of the four, which had a high WUE
    • …
    corecore