47 research outputs found

    Extremal trees, unicyclic and bicyclic graphs with respect to pp-Sombor spectral radii

    Full text link
    For a graph G=(V,E)G=(V,E) and viVv_{i}\in V, denote by dvid_{v_{i}} (or did_{i} for short) the degree of vertex viv_{i}. The pp-Sombor matrix Sp(G)\textbf{S}_{\textbf{p}}(G) (p0p\neq0) of a graph GG is a square matrix, where the (i,j)(i,j)-entry is equal to (dip+djp)1p\displaystyle (d_{i}^{p}+d_{j}^{p})^{\frac{1}{p}} if the vertices viv_{i} and vjv_{j} are adjacent, and 0 otherwise. The pp-Sombor spectral radius of GG, denoted by ρ(Sp(G))\displaystyle \rho(\textbf{S}_{\textbf{p}}(G)), is the largest eigenvalue of the pp-Sombor matrix Sp(G)\textbf{S}_{\textbf{p}}(G). In this paper, we consider the extremal trees, unicyclic and bicyclic graphs with respect to the pp-Sombor spectral radii. We characterize completely the extremal graphs with the first three maximum Sombor spectral radii, which answers partially a problem posed by Liu et al. in [MATCH Commun. Math. Comput. Chem. 87 (2022) 59-87]

    Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction

    Get PDF
    The CuOx thin film photocathodes were deposited on F-doped SnO2 (FTO) transparent conducting glasses by alternating current (AC) magnetron reactive sputtering under different Ar:O2 ratios. The advantage of this deposited method is that it can deposit a CuOx thin film uniformly and rapidly with large scale. From the photoelectrochemical (PEC) properties of these CuOx photocathodes, it can be found that the CuOx photocathode with Ar/O2 30:7 provide a photocurrent density of −3.2 mA cm−2 under a bias potential −0.5 V (vs. Ag/AgCl), which was found to be twice higher than that of Ar/O2 with 30:5. A detailed characterization on the structure, morphology and electrochemical properties of these CuOx thin film photocathodes was carried out, and it is found that the improved PEC performance of CuOx semiconductor photocathode with Ar/O2 30:7 attributed to the less defects in it, indicating that this Ar/O2 30:7 is an optimized condition for excellent CuOx semiconductor photocathode fabrication

    Growth differentiation factor-15/adiponectin ratio as a potential biomarker for metabolic syndrome in Han Chinese

    Get PDF
    AimsGrowth differentiation factor-15 (GDF-15) and adiponectin are adipokines that regulate metabolism. This study aimed to evaluate the roles of GDF-15, adiponectin, and GDF-15/adiponectin ratio (G/A ratio) as biomarkers for detecting metabolic syndrome (MS).Materials and methodsThis cross-sectional study included 676 participants aged 20–70 years in Jurong, China. The participants were divided into four groups based on sex and age (<40 and ≥40 years). MS was defined according to the modified National Cholesterol Education Program Adult Treatment Panel III criteria. Receiver operating characteristic curves were used to evaluate the performance of GDF-15, adiponectin, and the G/A ratio in predicting MS.ResultsThe prevalence of MS was 22.0% (149/676). Logistic regression analysis indicated that the G/A ratio and adiponectin levels, but not GDF-15 levels, were correlated with MS [odds ratio; 95% CI 1.010 (1.006–1.013) and 0.798 (0.735–0.865), respectively] after adjusting for confounding factors. The G/A ratio displayed a significant relationship with MS in each subgroup and with each MS component in both men and women; however, adiponectin concentrations were significantly associated with MS and all its components only in men (all P <0.05). The area under the curve (AUC) of the G/A ratio and the adiponectin level for MS was 0.758 and 0.748, respectively. The highest AUC was 0.757 for the adiponectin level in men and 0.724 for the G/A ratio in women.ConclusionsThis study suggests that the G/A ratio and adiponectin are potential biomarkers for detecting MS in women and men, respectively

    Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β

    Get PDF
    Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment

    Arithmetic-Geometric spectral radii of Unicyclic graphs

    Full text link
    Let dvid_{v_{i}} be the degree of the vertex viv_{i} of GG. The arithmetic-geometric matrix Aag(G)A_{ag}(G) of a graph GG is a square matrix, where the (i,j)(i,j)-entry is equal to dvi+dvj2dvidvj\displaystyle \frac{d_{v_{i}}+d_{v_{j}}}{2\sqrt{d_{v_{i}}d_{v_{j}}}} if the vertices viv_{i} and vjv_{j} are adjacent, and 0 otherwise. The arithmetic-geometric spectral radius of GG, denoted by ρag(G)\rho_{ag}(G), is the largest eigenvalue of the arithmetic-geometric matrix Aag(G)A_{ag}(G). In this paper, the unicyclic graphs of order n5n\geq5 with the smallest and first four largest arithmetic-geometric spectral radii are determined

    Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications

    No full text
    Abstract During tumorigenesis and development, participation of the tumor microenvironment is not negligible. As an important component in the tumor microenvironment, mesenchymal stem cells (MSCs) have been corroborated to mediate proliferation, metastasis, and drug resistance in many cancers, including osteosarcoma. What’s more, because of tumor site tropism, MSCs can be engineered to be loaded with therapeutic agents so that drugs can be precisely delivered to tumor lesions. In this review, we mainly discuss recent advances concerning the functions of MSCs in osteosarcoma and their possible clinical applications in the future

    Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production

    No full text
    Abstract Background The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Results Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to commercial biodiesel feedstock. Conclusions This work demonstrated the feasibility of utilizing synthetic and food waste-derived VFA for lipid production by Y. lipolytica. The good adaptability of Y. lipolytica to the high temperature and acidic environment further illustrated its considerable potential for practical application

    YdfD, a Lysis Protein of the Qin Prophage, Is a Specific Inhibitor of the IspG-Catalyzed Step in the MEP Pathway of Escherichia coli

    No full text
    Bacterial cryptic prophage (defective prophage) genes are known to drastically influence host physiology, such as causing cell growth arrest or lysis, upon expression. Many phages encode lytic proteins to destroy the cell envelope. As natural antibiotics, only a few lysis target proteins were identified. ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth. In this study, we provide evidence that YdfD can interact with IspG, a key enzyme involved in the MEP pathway, both in vivo and in vitro. We show that intact YdfD is required for the interaction with IspG to perform its lysis function and that the mRNA levels of ydfD increase significantly under certain stress conditions. Crucially, the cell lysis induced by YdfD can be abolished by the overexpression of ispG or the complementation of the IspG enzyme catalysis product methylerythritol 2,4-cyclodiphosphate. We propose that YdfD from the Qin cryptic prophage inhibits IspG to block the MEP pathway, leading to a compromised cell membrane and cell wall biosynthesis and eventual cell lysis

    Disentangling Light‐Induced Charge Transfer, Heating, and Strain Effects in WS2/Graphene Heterostructures

    No full text
    Abstract Heterostructures formed by 2D transition metal dichalcogenides (TMDCs) and graphene are not only fundamentally important for the exploration of novel interface physics but also indispensable for various optoelectronic devices. Often multiple effects such as charge transfer (CT), heating, and strain are present simultaneously and their interplay significantly impacts the properties of such heterostructures. However, the identification and separation of these three individual effects are challenging and have not been demonstrated in 2D heterostructures. Here, through a concurrent analysis of the Raman modes and photoluminescence spectra from graphene and WS2 in temperature‐ and power‐dependent measurements, this work has succeeded in disentangling the effects of light‐induced CT, heating, and strain effects in WS2/graphene heterostructure on SiO2/Si substrate. Without disentangling these effects, the light‐induced carrier density in graphene (WS2) would have been underestimated (overestimated) by up to 62% (73%) in this situation. More importantly, a positive temperature coefficient of the G‐mode Raman shift is obtained without excluding the strain and CT effects, contrary to the negative coefficient due to the intrinsic thermal effect. This study demonstrates the importance of disentangling the individual effects and the approach paves the way for a comprehensive understanding of electrical, thermal, and mechanical properties of TMDC/graphene heterostrucutres
    corecore