67 research outputs found

    Fabrication and magnetic properties of granular Co/porous InP nanocomposite materials

    Get PDF
    A novel Co/InP magnetic semiconductor nanocomposite was fabricated by electrodeposition magnetic Co nanoparticles into n-type porous InP templates in ethanol solution of cobalt chloride. The content or particle size of Co particles embedded in porous InP increased with increasing deposition time. Co particles had uniform distribution over pore sidewall surface of InP template, which was different from that of ceramic template and may open up new branch of fabrication of nanocomposites. The magnetism of such Co/InP nanocomposites can be gradually tuned from diamagnetism to ferromagnetism by increasing the deposition time of Co. Magnetic anisotropy of this Co/InP nanocomposite with magnetization easy axis along the axis of InP square channel was well realized by the competition between shape anisotropy and magnetocrystalline anisotropy. Such Co/InP nanocomposites with adjustable magnetism may have potential applications in future in the field of spin electronics

    Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion

    Get PDF
    This work reports an oriented growth process of two-dimensional (2D) ZnO nanoflakes on aluminum substrate through a low temperature hydrothermal technique and proposes the preliminary growth mechanism. A bionic superhydrophobic surface with excellent corrosion protection over a wide pH range in both acidic and alkaline solutions was constructed by a chemical coating treatment with stearic acid (SA) molecules on ZnO nanoflakes. It is found that the superhydrophobic surface of ZnO nanoflake arrays shows a maximum water contact angle (CA) of 157° and a low sliding angle of 8°, and it can be reversibly switched to its initial superhydrophilic state under ultraviolet (UV) irradiation, which is due to the UV-induced decomposition of the coated SA molecules. This study is significant for simple and inexpensive building of large-scale 2D ZnO nanoflake arrays with special wettability which can extend the applications of ZnO films to many other important fields

    Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    Get PDF
    The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100) by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE) properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/μm) and a high field-enhancement factor (1745.8). The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior

    Fabrication and ultraviolet photoresponse characteristics of ordered SnOx (x ≈ 0.87, 1.45, 2) nanopore films

    Get PDF
    Based on the porous anodic aluminum oxide templates, ordered SnOx nanopore films (approximately 150 nm thickness) with different x (x ≈ 0.87, 1.45, 2) have been successfully fabricated by direct current magnetron sputtering and oxidizing annealing. Due to the high specific surface area, this ordered nanopore films exhibit a great improvement in recovery time compared to thin films for ultraviolet (UV) detection. Especially, the ordered SnOx nanopore films with lower x reveal higher UV light sensitivity and shorter current recovery time, which was explained by the higher concentration of the oxygen vacancies in this SnOx films. This work presents a potential candidate material for UV light detector

    Self-assembly of versatile tubular-like In 2 O 3 nanostructures

    Get PDF
    Abstract Versatile indium oxide tubular nanostructures (well-aligned nanotube arrays, flower-like tubular structures, and square nanotubes) were fabricated by a facile and reliable chemical vapor deposition (CVD) technique, taking advantage of the self-assembly property and substrate-induced epitaxial growth mechanism. The technique has a few advantages, such as low growth temperature, nonexistence of catalyst, template-free synthesis, direct bonding to the semiconductor substrates, etc. This strategy might extend the approach of synthesizing desirable nanostructures of other important low-melting metal oxides for potential applications

    Integrated Simulation for Microseismic Fracture Networks with Automatic History Matching in Tight Oil Development: A Field Case from Block Y2 in Ordos Basin, China

    Get PDF
    The reliability of forecasts, fracture design, and recovery enhancement strategies in tight oil reservoirs is significantly compromised by the substantial uncertainties associated with fracture characterization. This article introduces an integrated simulation workflow for modeling microseismic fracture networks in tight oil reservoirs, incorporating automatic history matching, as illustrated through a field case study from block Y2 in the Ordos Basin, China. The model stochastically generates the geometry of complex fracture networks (CFNs), including parameters such as length, aperture, inclination and azimuth angles, and spatial positioning, constrained by data from hydraulic fracturing, core analyses, and microseismic monitoring. It employs a stochastic parameterization model to produce an ensemble of initial CFN property realizations and utilizes an advanced Green function-based hierarchical fracture model to accurately depict CFN morphology. The model is further refined, and its uncertainty in fracture characterization is minimized through calibration with an innovative Ensemble Kalman Filter-based assisted history-matching algorithm. Evidence suggests that this comprehensive approach effectively leverages all available geological data, substantially reduces uncertainties in the production process, and aids in identifying the optimal development strategy

    Production of a Monoclonal Antibody for the Detection of Forchlorfenuron: Application in an Indirect Enzyme-Linked Immunosorbent Assay and Immunochromatographic Strip

    Get PDF
    In this study, a monoclonal antibody (mAb) specific to forchlorfenuron (CPPU) with high sensitivity and specificity was produced and designated (9G9). To detect CPPU in cucumber samples, an indirect enzyme-linked immunosorbent assay (ic-ELISA) and a colloidal gold nanobead immunochromatographic test strip (CGN-ICTS) were established using 9G9. The half-maximal inhibitory concentration (IC50) and the LOD for the developed ic-ELISA were determined to be 0.19 ng/mL and 0.04 ng/mL in the sample dilution buffer, respectively. The results indicate that the sensitivity of the antibodies prepared in this study (9G9 mAb) was higher than those reported in the previous literature. On the other hand, in order to achieve rapid and accurate detection of CPPU, CGN-ICTS is indispensable. The IC50 and the LOD for the CGN-ICTS were determined to be 27 ng/mL and 6.1 ng/mL. The average recoveries of the CGN-ICTS ranged from 68 to 82%. The CGN-ICTS and ic-ELISA quantitative results were all confirmed by liquid chromatography—tandem mass spectrometry (LC-MS/MS) with 84–92% recoveries, which indicated the methods developed herein are appropriate for detecting CPPU in cucumber. The CGN-ICTS method is capable of both qualitative and semiquantitative analysis of CPPU, which makes it a suitable alternative complex instrument method for on-site detection of CPPU in cucumber samples since it does not require specialized equipment

    A highly sensitive bio-barcode immunoassay for multi-residue detection of organophosphate pesticides based on fluorescence anti-quenching

    Get PDF
    Balancing the risks and benefits of organophosphate pesticides (OPs) on human and environmental health relies partly on their accurate measurement. A highly sensitive fluorescence anti-quenching multi-residue bio-barcode immunoassay was developed to detect OPs (triazophos, parathion, and chlorpyrifos) in apples, turnips, cabbages, and rice. Gold nanoparticles were functionalized with monoclonal antibodies against the tested OPs. DNA oligonucleotides were complementarily hybridized with an RNA fluorescent label for signal amplification. The detection signals were generated by DNA-RNA hybridization and ribonuclease H dissociation of the fluorophore. The resulting fluorescence signal enables multiplexed quantification of triazophos, parathion, and chlorpyrifos residues over the concentration range of 0.01–25, 0.01–50, and 0.1–50 ng/mL with limits of detection of 0.014, 0.011, and 0.126 ng/mL, respectively. The mean recovery ranged between 80.3% and 110.8% with relative standard deviations of 7.3%–17.6%, which correlate well with results obtained by LC-MS/MS. The proposed bio-barcode immunoassay is stable, reproducible and reliable, and is able to detect low residual levels of multi-residue OPs in agricultural products.This work was supported by the Central Public Interest Scientific Institution Basal Research Fund for the Chinese Academy of Agricultural Sciences (Grant No.: Y2021PT05), National Institute of Environmental Health Science Superfund Research Program (Grant No.: P42 ES004699), National Academy of Sciences (Subaward No.: 2000009144), and Ningbo Innovation Project for Agro-Products Quality and Safety (Grant No.: 2019CXGC007).Peer reviewe
    corecore