39 research outputs found
Neutrophil to albumin ratio: a biomarker in non-alcoholic fatty liver disease and with liver fibrosis
ObjectiveGiven the high prevalence of non-alcoholic fatty liver disease (NAFLD) and its potential to progress to liver fibrosis, it is crucial to identify the presence of NAFLD in patients to guide their subsequent management. However, the current availability of non-invasive biomarkers for NAFLD remains limited. Therefore, further investigation is needed to identify and develop non-invasive biomarkers for NAFLD.MethodsA retrospective analysis was conducted on 11,883 patients admitted to the Healthcare Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, from January 2016 to December 2019 and divided into NAFLD and non-NAFLD groups. Anthropometric and laboratory examination data were collected. The correlations between variables and NAFLD were evaluated using the student’s t-test or Mann–Whitney U test and binary logistic regression analysis. The predictive ability of these variables for NAFLD was assessed using the areas under the curves (AUCs) of receiver operating characteristics.ResultsAmong the included patients, 3,872 (32.58%) were diagnosed with NAFLD, with 386 (9.97%) individuals having liver fibrosis. Patients with NAFLD exhibited a higher proportion of males, elevated body mass index (BMI), and increased likelihood of hypertension, diabetes mellitus, and atherosclerosis. Logistic regression analysis identified the neutrophil to albumin ratio (NAR) as the most promising novel inflammation biomarkers, with the highest AUC value of 0.701, a cut-off value of 0.797, sensitivity of 69.40%, and specificity of 66.00% in identifying the risk of NAFLD. Moreover, NAR demonstrated superior predictive value in identifying NAFLD patients at risk of liver fibrosis, with an AUC value of 0.795, sensitivity of 71.30%, and specificity of 73.60% when NAR reached 1.285.ConclusionThese findings highlight that the novel inflammatory biomarker, NAR, is a convenient and easily accessible non-invasive predictor for NAFLD and NAFLD with liver fibrosis
Small RNAs Targeting Transcription Start Site Induce Heparanase Silencing through Interference with Transcription Initiation in Human Cancer Cells
Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against −9/+10 bp (siH3), but not −174/−155 bp (siH1) or −134/−115 bp (siH2) region relative to transcription start site (TSS) locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 27 trimethylation (H3K27me3) or active chromatin marker acetylated histone H3 (AcH3). The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB), but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (−9/+10 bp) into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells
Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells
<p>Abstract</p> <p>Background</p> <p>Heparanase facilitates the invasion and metastasis of cancer cells, and is over-expressed in many kinds of malignancies. Our studies indicated that heparanase was frequently expressed in advanced gastric cancers. The aim of this study is to determine whether silencing of heparanase expression can abolish the malignant characteristics of gastric cancer cells.</p> <p>Methods</p> <p>Three heparanase-specific small interfering RNA (siRNAs) were designed, synthesized, and transfected into cultured gastric cancer cell line SGC-7901. Heparanase expression was measured by RT-PCR, real-time quantitative PCR and Western blot. Cell proliferation was detected by MTT colorimetry and colony formation assay. The <it>in vitro </it>invasion and metastasis of cancer cells were measured by cell adhesion assay, scratch assay and matrigel invasion assay. The angiogenesis capabilities of cancer cells were measured by tube formation of endothelial cells.</p> <p>Results</p> <p>Transfection of siRNA against 1496-1514 bp of encoding regions resulted in reduced expression of heparanase, which started at 24 hrs and lasted for 120 hrs post-transfection. The siRNA-mediated silencing of heparanase suppressed the cellular proliferation of SGC-7901 cells. In addition, the <it>in vitro </it>invasion and metastasis of cancer cells were attenuated after knock-down of heparanase. Moreover, transfection of heparanase-specific siRNA attenuated the <it>in vitro </it>angiogenesis of cancer cells in a dose-dependent manner.</p> <p>Conclusions</p> <p>These results demonstrated that gene silencing of heparanase can efficiently abolish the proliferation, invasion, metastasis and angiogenesis of human gastric cancer cells <it>in vitro</it>, suggesting that heparanase-specific siRNA is of potential values as a novel therapeutic agent for human gastric cancer.</p
Quantitative Diagnosis of Atrophic Gastritis by Probe-Based Confocal Laser Endomicroscopy
Aims. The aims of this study were to characterize nonatrophic and atrophic gastric mucosa under conventional endoscopy and probe-based confocal laser endomicroscopy (pCLE) modes and to define quantitative diagnostic parameters for these lesions under pCLE. Method. In phase I, 64 patients with gastric mucosal lesions diagnosed by gastrointestinal endoscopy were enrolled in the study. Normal mucosa and suspicious lesions were evaluated under normal white light imaging (WLI) and pCLE mode. Descriptive characteristic of gastric mucosal inflammation and atrophy under pCLE were defined according to the histology. In phase II, the criteria for nonatrophic gastritis (NAG) and chronic atrophic gastritis (CAG) under pCLE were used to diagnose the mucosal lesions in 431 patients. Diagnostic accuracy of each endoscopy modes was evaluated by measuring the concordance with histology. Result. A total of 64 patients with 187 positions were enrolled in the first part of this study. According to the histological diagnosis, the vessel diameter was increased in the NAG (11.18 ± 0.1 μm) and CAG (13.21 ± 0.29 μm) groups compared to the normal group (10.58 ± 0.13 μm); meanwhile, the distance between glands was 17.75 ± 0.51 μm in the normal group, 22.38 ± 0.45 μm in the NAG group, and 34.66 ± 0.82 μm in the CAG group, which increased significantly compared to nonatrophic mucosa. In order to differentiate atrophic mucosa from nonatrophic mucosa in real time, the cutoff value between these two kinds of lesions was >30 μm in distance between glands. In phase II, 431 patients with 431 positions were evaluated under pCLE by using the criteria above. The sensitivity, specificity, PPV, and NPV for the diagnostic parameter were 90.3%, 78.8%, 85.1%, and 85.8%. The consistency of pCLE (Kappa value = 0.698) with histology was much better than WLI (Kappa value = 0.393). Conclusion. pCLE shows high potential for the diagnosis of gastric inflammation and atrophy based on quantitative criteria and has the ability to be a substitute for histology in the diagnosis of diffuse lesions in the stomach
Table_1_Neutrophil to albumin ratio: a biomarker in non-alcoholic fatty liver disease and with liver fibrosis.docx
ObjectiveGiven the high prevalence of non-alcoholic fatty liver disease (NAFLD) and its potential to progress to liver fibrosis, it is crucial to identify the presence of NAFLD in patients to guide their subsequent management. However, the current availability of non-invasive biomarkers for NAFLD remains limited. Therefore, further investigation is needed to identify and develop non-invasive biomarkers for NAFLD.MethodsA retrospective analysis was conducted on 11,883 patients admitted to the Healthcare Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, from January 2016 to December 2019 and divided into NAFLD and non-NAFLD groups. Anthropometric and laboratory examination data were collected. The correlations between variables and NAFLD were evaluated using the student’s t-test or Mann–Whitney U test and binary logistic regression analysis. The predictive ability of these variables for NAFLD was assessed using the areas under the curves (AUCs) of receiver operating characteristics.ResultsAmong the included patients, 3,872 (32.58%) were diagnosed with NAFLD, with 386 (9.97%) individuals having liver fibrosis. Patients with NAFLD exhibited a higher proportion of males, elevated body mass index (BMI), and increased likelihood of hypertension, diabetes mellitus, and atherosclerosis. Logistic regression analysis identified the neutrophil to albumin ratio (NAR) as the most promising novel inflammation biomarkers, with the highest AUC value of 0.701, a cut-off value of 0.797, sensitivity of 69.40%, and specificity of 66.00% in identifying the risk of NAFLD. Moreover, NAR demonstrated superior predictive value in identifying NAFLD patients at risk of liver fibrosis, with an AUC value of 0.795, sensitivity of 71.30%, and specificity of 73.60% when NAR reached 1.285.ConclusionThese findings highlight that the novel inflammatory biomarker, NAR, is a convenient and easily accessible non-invasive predictor for NAFLD and NAFLD with liver fibrosis.</p
Hypoxia-Induced Mitogenic Factor Promotes Vascular Adhesion Molecule-1 Expression via the PI-3K/Akt–NF-κB Signaling Pathway
Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone 1), is an important player in lung inflammation. However, the effects of HIMF on cell adhesion molecules involved in lung inflammation remain largely unknown. In the present work, we tested whether HIMF modulates vascular adhesion molecule (VCAM)-1 expression, and dissected the possible signaling pathways that link HIMF to VCAM-1 upregulation. Recombinant HIMF protein, instilled intratracheally into adult mouse lungs, results in a significant increase of VCAM-1 production in vascular endothelial, alveolar type II, and airway epithelial cells. In cultured mouse endothelial SVEC 4-10 and lung epithelial MLE-12 cells, we demonstrated that HIMF induces VCAM-1 expression via the phosphatidylinositol-3 kinase (PI-3K)/Akt–nuclear factor (NF)-κB signaling pathway. Knockdown of HIMF expression by small interference RNA attenuated LPS-induced VCAM-1 expression in vitro. We showed that HIMF induced phosphorylation of the IκB kinase signalsome and, subsequently, IκBα, leading to activation of NF-κB. Meanwhile, VCAM-1 production was correspondingly upregulated. Blocking NF-κB signaling pathway by expression of dominant-negative mutants of IκB kinase and IκBα suppressed HIMF-induced VCAM-1 upregulation. HIMF also strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Δp85, as well as PI-3K inhibitor, LY294002, also blocked HIMF-induced NF-κB activation and attenuated VCAM-1 production. Furthermore, LY294002 pretreatment abolished HIMF-enhanced mononuclear cells adhesion to endothelial and epithelial cells. Our findings connect HIMF to signaling pathways that regulate inflammation, and thus reveal the critical roles that HIMF plays in lung inflammation
Hypoxia-Induced Mitogenic Factor Modulates Surfactant Protein B and C Expression in Mouse Lung
Previous studies have demonstrated a robust pulmonary expression of hypoxia-induced mitogenic factor (HIMF) during the perinatal period, when surfactant protein (SP) synthesis begins. We hypothesized that HIMF modulates SP expression and participates in lung development and maturation. The temporal-spatial expression of HIMF, SP-B, and SP-C in developing mouse lungs was examined by immunohistochemical staining, Western blot, and RT-PCR. The expression and localization of SP-B and SP-C were investigated in mouse lungs after intratracheal instillation of HIMF in adult mice. The effects of HIMF on SP-B and SP-C transcription activity, and on mRNA degradation, were investigated in mouse lung epithelial (MLE)-12 and C10 cells using the promoter-luciferase reporter assay and actinomycin D incubation. The activation of Akt, extracellular signal-regulated kinase (ERK)1/2, and p38 mitogen-activated protein kinase was explored by Western blot. Intratracheal instillation of HIMF resulted in significant increases of SP-B and SP-C production, predominantly localized to alveolar type II cells. In MLE-12 and C10 cells, HIMF enhanced SP-B and SP-C mRNA levels in a dose-dependent manner. Meanwhile, HIMF increased transcription activity and prevented actinomycin D–facilitated SP-B and SP-C mRNA degradation in MLE-12 cells. Incubation of cells with LY294002, PD098059, or U0126 abolished HIMF-induced Akt and ERK1/2 phosphorylation and suppressed HIMF-induced SP-B and SP-C production, whereas SB203580 had no effect. These results indicate that HIMF induces SP-B and SP-C production in mouse lungs and alveolar type II–like cell lines via activations of phosphatidylinositol 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase, suggesting that HIMF plays critical roles in lung development and maturation