2 research outputs found

    Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, chemically resemble estrogen and some have been used as estrogen substitutes. Kaempferol, a flavonol derived from the rhizome of <it>Kaempferia galanga </it>L., is a well-known phytoestrogen possessing osteogenic effects that is also found in a large number of plant foods.</p> <p>The herb <it>K. galanga </it>is a popular traditional aromatic medicinal plant that is widely used as food spice and in medicinal industries. In the present study, both the estrogenic and osteogenic properties of kaempferol are evaluated.</p> <p>Methods</p> <p>Kaempferol was first evaluated for its estrogenic properties, including its effects on estrogen receptors. The osteogenic properties of kaempferol were further determined its induction effects on specific osteogenic enzymes and genes as well as the mineralization process in cultured rat osteoblasts.</p> <p>Results</p> <p>Kaempferol activated the transcriptional activity of pERE-Luc (3.98 ± 0.31 folds at 50 μM) and induced estrogen receptor α (ERα) phosphorylation in cultured rat osteoblasts, and this ER activation was correlated with induction and associated with osteoblast differentiation biomarkers, including alkaline phosphatase activity and transcription of osteoblastic genes, <it>e.g</it>., type I collagen, osteonectin, osteocalcin, Runx2 and osterix. Kaempferol also promoted the mineralization process of osteoblasts (4.02 ± 0.41 folds at 50 μM). ER mediation of the kaempferol-induced effects was confirmed by pretreatment of the osteoblasts with an ER antagonist, ICI 182,780, which fully blocked the induction effect.</p> <p>Conclusion</p> <p>Our results showed that kaempferol stimulates osteogenic differentiation of cultured osteoblasts by acting through the estrogen receptor signaling.</p

    Functions of Danggui Buxue Tang, a Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, in Uterus and Liver are Both Estrogen Receptor-Dependent and -Independent

    Get PDF
    Danggui Buxue Tang (DBT), a herbal decoction containing Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), has been used in treating menopausal irregularity in women for more than 800 years in China. Pharmacological results showed that DBT exhibited significant estrogenic properties in vitro, which therefore suggested that DBT could activate the nuclear estrogen receptors. Here, we assessed the estrogenic properties of DBT in an ovariectomized in vivo rat model: DBT was applied to the ovariectomized rats for 3 days. The application of DBT did not alter the weight of uterus and liver, as well as the transcript expression of the proliferation markers including the estrogen receptors alpha and beta. However, DBT stimulated the transcript expression of the estrogen responsive genes. In addition, the inductive role of DBT on the expression of members of the aryl hydrocarbon receptor family in uterus and liver of ovariectomized rats was confirmed. These responses of DBT however were clearly distinct from the response pattern detectable here for 17 beta-estradiol. Therefore, DBT exhibited weak, but significant, estrogenic properties in vivo; however, some of its activities were independent of the estrogen receptor. Thus, DBT could be an exciting Chinese herbal decoction for an alternative treatment of hormone replacement therapy for women in menopause without subsequent estrogenic side effects
    corecore