28 research outputs found

    Single-shot quantitative differential phase contrast imaging combined with programmable polarization multiplexing illumination

    Full text link
    We propose a single-shot quantitative differential phase contrast (DPC) method with polarization multiplexing illumination. In the illumination module of our system, the programmable LED array is divided into four quadrants and covered with polarizing films of four different polarization angles. We use a polarization camera with polarizers before the pixels in the imaging module. By matching the polarization angle between the polarizing films over the custom LED array and the polarizers in the camera, two sets of asymmetric illumination acquisition images can be calculated from a single-shot acquisition image. Combined with the phase transfer function, we can calculate the quantitative phase of the sample. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of the phase resolution target, as well as Hela cells.Comment: 5 pages,4figure

    A Novel Strategy of US3 Codon De-Optimization for Construction of an Attenuated Pseudorabies Virus against High Virulent Chinese Pseudorabies Virus Variant

    Get PDF
    In this study, we applied bacterial artificial chromosome (BAC) technology with PRVĪ”TK/gE/gI as the base material to replace the first, central, and terminal segments of the US3 gene with codon-deoptimized fragments via two-step Red-mediated recombination in E. coli GS1783 cells. The three constructed BACs were co-transfected with gI and part of gE fragments carrying homologous sequences (gI+gEā€™), respectively, in swine testicular cells. These three recombinant viruses with US3 codon de-optimization ((PRVĪ”TK&gE-US3deopāˆ’1, PRVĪ”TK&gE-US3deopāˆ’2, and PRVĪ”TK&gE-US3deopāˆ’3) were obtained and purified. These three recombinant viruses exhibited similar growth kinetics to the parental AH02LA strain, stably retained the deletion of TK and gE gene fragments, and stably inherited the recoded US3. Mice were inoculated intraperitoneally with the three recombinant viruses or control virus PRVĪ”TK&gEAH02 at a 107.0 TCID50 dose. Mice immunized with PRVĪ”TK&gE-US3deopāˆ’1 did not develop clinical signs and had a decreased virus load and attenuated pathological changes in the lungs and brain compared to the control group. Moreover, immunized mice were challenged with 100 LD50 of the AH02LA strain, and PRVĪ”TK&gE-US3deopāˆ’1 provided similar protection to that of the control virus PRVĪ”TK&gEAH02. Finally, PRVĪ”TK&gE-US3deopāˆ’1 was injected intramuscularly into 1-day-old PRV-negative piglets at a dose of 106.0 TCID50. Immunized piglets showed only slight temperature reactions and mild clinical signs. However, high levels of seroneutralizing antibody were produced at 14 and 21 days post-immunization. In addition, the immunization of PRVĪ”TK&gE-US3deopāˆ’1 at a dose of 105.0 TCID50 provided complete clinical protection and prevented virus shedding in piglets challenged by 106.5 TCID50 of the PRV AH02LA variant at 1 week post immunization. Together, these findings suggest that PRVĪ”TK&gE-US3deopāˆ’1 displays great potential as a vaccine candidate

    Construction of a Novel Infectious Clone of Recombinant Herpesvirus of Turkey Fc-126 Expressing VP2 of IBDV

    No full text
    The increased virulence of infectious bursal disease virus (IBDV) is a threat to the chicken industry. The construction of novel herpesvirus of turkey-vectored (HVT) vaccines expressing VP2 of virulent IBDV may be a promising vaccine candidate for controlling this serious disease in chickens. We generated a novel infectious clone of HVT Fc-126 by inserting mini-F sequences in lieu of the glycoprotein C (gC) gene. Based on this bacterial artificial chromosome (BAC), a VP2 expression cassette containing the pMCMV IE promoter and a VP2 sequence from the virulent IBDV NJ09 strain was inserted into the noncoding area between the UL55 and UL56 genes to generate the HVT vector VP2 recombinant, named HVT-VP2-09. The recovered vectored mutant HVT-VP2-09 exhibited higher titers (p = 0.0202 at 36 h) or similar growth kinetics to the parental virus HVT Fc-126 (p = 0.1181 at 48 h and p = 0.1296 at 64 h). The high reactivation ability and strong expression of VP2 by HVT-VP2-09 in chicken embryo fibroblasts (CEFs) were confirmed by indirect immunofluorescence (IFA) and Western blotting. The AGP antibodies against IBDV were detected beginning at 3 weeks post-inoculation (P.I.) of HVT-VP2-09 in 1-day-old SPF chickens. Seven of ten chickens immunized with HVT-VP2-09 were protected post-challenge (P.C.) with the virulent IBDV NJ09 strain. In contrast, all chickens in the challenge control group showed typical IBD lesions in bursals, and eight of ten died P.C. In this study, we demonstrated that (i) a novel HVT BAC with the whole genome of the Fc-126 strain was obtained with the insertion of mini-F sequences in lieu of the gC gene; (ii) HVT-VP2-09 harboring the VP2 expression cassette from virulent IBDV exhibited in vitro growth properties similar to those of the parental HVT virus in CEF cells; and (iii) HVT-VP2-09 can provide efficient protection against the IBDV NJ09 strain

    Polysiloxane Functionalized Carbon Dots and Their Cross-Linked Flexible Silicone Rubbers for Color Conversion and Encapsulation of White LEDs

    No full text
    In this work, aminopropylmethylpolysiloxane (AMS) functionalized luminescent carbon dots (AMS-CDs) were prepared via a one-step solvothermal method. AMS-CDs could be self- or co-cross-linking with AMS to form 3D flexible transparent silicone rubbers (SRs) where CDs acted as cross-linking points, so the loading fraction of AMS-CDs could be adjusted from 10 to 100 wt %, thus modulating fluorescence properties and flexibility of silicone rubbers. Because of the self-curing property and high thermal stability, AMS-CDs were also studied in white LEDs (WLEDs), serving as a color conversion and encapsulation layer of GaN based blue LEDs simultaneously that would avoid the traditional problem of poor compatibility between emitting and packaging materials. And the color coordinate of AMS-CDs based WLEDs (0.33, 0.28) was very close to the pure white light. In addition, the obtained CDs cross-linked SRs had good transparency (<i>T</i> > 80%) at 510ā€“1400 nm and high refractive indexes (1.33ā€“1.54) that could meet the need of commercial packaging materials and optical application. AMS-CDs were also promising to be used in the UV LEDs based WLEDs according to their wide wavelength emission and flexible optoelectronic device

    Multiā€omics integration reveals a core network involved in host defence and hyperkeratinization in psoriasis

    No full text
    Abstract Objectives The precise pathogenesis of psoriasis remains incompletely explored. We aimed to better understand the underlying mechanisms of psoriasis, using a systems biology approach based on transcriptomics and microbiome profiling. Methods We collected the skin tissue biopsies and swabs in both lesional and nonā€lesional skin of 13 patients with psoriasis, 15 patients with psoriatic arthritis and healthy skin from 12 patients with ankylosing spondylitis. To study the similarities and differences in the molecular profiles between these three conditions, and the associations between the host defence and microbiota composition, we performed highā€throughput RNAā€sequencing to quantify the gene expression profile in tissues. The metagenomic composition of 16S on local skin sites was quantified by clustering amplicon sequences and counted into operational taxonomic units. We further analysed associations between the transcriptome and microbiome profiling. Results We found that lesional and nonā€lesional samples were remarkably different in terms of their transcriptome profiles. The functional annotation of differentially expressed genes showed a major enrichment in neutrophil activation. By using coā€expression gene networks, we identified a gene module that was associated with local psoriasis severity at the site of biopsy. From this module, we found a ā€˜coreā€™ set of genes that was functionally involved in neutrophil activation, epidermal cell differentiation and response to bacteria. Skin microbiome analysis revealed that the abundances of Enhydrobacter, Micrococcus and Leptotrichia were significantly correlated with the genes in core network. Conclusions We identified a core gene network that associated with local disease severity and microbiome composition, involved in the inflammation and hyperkeratinization in psoriatic skin

    Table2_Network pharmacology and gut microbiota insights: unraveling Shenling Baizhu powderā€™s role in psoriasis treatment.DOCX

    No full text
    Background: Psoriasis, a chronic skin condition characterized by systemic inflammation and altered gut microbiota, has been a target of Traditional Chinese Medicine (TCM) for centuries. Shenling Baizhu Powder (SLBZP), a TCM formulation, holds promise for treating inflammatory diseases, but its specific role in psoriasis and impact on gut microbiota is not fully understood.Objective: This study aims to elucidate the mechanism of SLBZP in treating psoriasis, integrating component analysis, network pharmacology, and experimental validation in mice models.Methods: We commenced with a detailed component analysis of SLBZP using liquid chromatograph and mass spectrometer (LC-MS). Network pharmacology analysis was used to predict the potential action targets and pathways of SLBZP in psoriasis. An in vivo experiment was conducted with psoriasis mice models, treated with SLBZP. Therapeutic effects were assessed via symptomatology, histopathology, and immunohistochemical analysis. Gut microbiota composition was analyzed using 16S rRNA gene sequencing.Results: A total of 42 main components and quality markers were identified, primarily from licorice and ginseng, including flavonoids, saponins and other markers. PPI topology analysis showed that TNF, IL-6, IL-1Ī², TP53 and JUN were the core DEPs. 168 signaling pathways including lipid and atherosclerosis, AGE-RAGE signaling pathway, IL-17 signaling pathway and Th17 cell differentiation were enriched by KEGG. SLBZP demonstrated significant therapeutic effects on psoriasis in mice, with alterations in skin pathology and biomarkers. Additionally, notable changes in gut microbiota composition were observed post-treatment, indicating a possible gut-skin axis involvement.Conclusion: This research has pinpointed lipid metabolism as a key pathway in the treatment of psoriasis with SLBZP. It explores how SLBZPā€™s modulation of gut microbiota and lipid metabolism can alleviate psoriasis, suggesting that balancing gut microbiota may reduce inflammation mediators and offer therapeutic benefits. This underscores lipid metabolism modulation as a potential new strategy in psoriasis treatment.</p

    Hepatitis B virus RNAs co-opt ELAVL1 for stabilization and CRM1-dependent nuclear export.

    No full text
    Hepatitis B virus (HBV) chronically infects 296 million people worldwide, posing a major global health threat. Export of HBV RNAs from the nucleus to the cytoplasm is indispensable for viral protein translation and genome replication, however the mechanisms regulating this critical process remain largely elusive. Here, we identify a key host factor embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) that binds HBV RNAs and controls their nuclear export. Using an unbiased quantitative proteomics screen, we demonstrate direct binding of ELAVL1 to the HBV pregenomic RNA (pgRNA). ELAVL1 knockdown inhibits HBV RNAs posttranscriptional regulation and suppresses viral replication. Further mechanistic studies reveal ELAVL1 recruits the nuclear export receptor CRM1 through ANP32A and ANP32B to transport HBV RNAs to the cytoplasm via specific AU-rich elements, which can be targeted by a compound CMLD-2. Moreover, ELAVL1 protects HBV RNAs from DIS3+RRP6+ RNA exosome mediated nuclear RNA degradation. Notably, we find HBV core protein is dispensable for HBV RNA-CRM1 interaction and nuclear export. Our results unveil ELAVL1 as a crucial host factor that regulates HBV RNAs stability and trafficking. By orchestrating viral RNA nuclear export, ELAVL1 is indispensable for the HBV life cycle. Our study highlights a virus-host interaction that may be exploited as a new therapeutic target against chronic hepatitis B

    Data_Sheet_1_Construction of pseudorabies virus variant attenuated vaccine: codon deoptimization of US3 and UL56 genes based on PRV gE/TK deletion strain.pdf

    No full text
    Since 2011, pseudorabies based on the pseudorabies virus (PRV) variant has emerged as a serious health issue in pig farms in China. The PRV gE/TK or gE/gI/TK deletion strains protect against emerging PRV variants. However, these variants may cause lethal infections in newborn piglets without PRV antibodies. Previous studies have shown that codon deoptimization of a virulence gene causes virus attenuation. Accordingly, we deoptimized US3-S (US3 gene encoding a short isoform that represents approximately 95% of the total US3 transcription) and UL56 genes (first 10 or all codons) of PRV gE/TK deletion strain (PRVĪ”TK&gEāˆ’AH02) to generate six recombinant PRVs through bacterial artificial chromosome technology. In swine testicular cells, recombinant PRVs with all codon deoptimization of US3-S or UL56 genes were grown to lower titers than the parental virus. Notably, US3-S or UL56 with all codon deoptimization reduced mRNA and protein expressions. Subsequently, the safety and immunogenicity of recombinant PRVs with codon deoptimization of US3-S or UL56 are evaluated as vaccine candidates in mice and piglets. The mice inoculated with recombinant PRVs with codon deoptimization of US3-S or UL56 showed exceptional survival ability without severe clinical signs. All codons deoptimized (US3-S and UL56) significantly decreased virus load and attenuated pathological changes in the brains of the mice. Moreover, the protection efficiency offered by recombinant PRVs with codon deoptimization of US3-S or UL56 showed similar effects to PRVĪ”TK&gEāˆ’AH02. Remarkably, the 1-day-old PRV antibody-negative piglets inoculated with PRVĪ”TK&gE-US3-STāˆ’CD (a recombinant PRV with all codon deoptimization of US3-S) presented no abnormal clinical symptoms, including fever. The piglets inoculated with PRVĪ”TK&gE-US3-STāˆ’CD showed a high serum neutralization index against the PRV variant. In conclusion, these results suggest using codon deoptimization to generate innovative live attenuated PRV vaccine candidates.</p
    corecore