93 research outputs found

    Domestic Activities Classification from Audio Recordings Using Multi-scale Dilated Depthwise Separable Convolutional Network

    Full text link
    Domestic activities classification (DAC) from audio recordings aims at classifying audio recordings into pre-defined categories of domestic activities, which is an effective way for estimation of daily activities performed in home environment. In this paper, we propose a method for DAC from audio recordings using a multi-scale dilated depthwise separable convolutional network (DSCN). The DSCN is a lightweight neural network with small size of parameters and thus suitable to be deployed in portable terminals with limited computing resources. To expand the receptive field with the same size of DSCN's parameters, dilated convolution, instead of normal convolution, is used in the DSCN for further improving the DSCN's performance. In addition, the embeddings of various scales learned by the dilated DSCN are concatenated as a multi-scale embedding for representing property differences among various classes of domestic activities. Evaluated on a public dataset of the Task 5 of the 2018 challenge on Detection and Classification of Acoustic Scenes and Events (DCASE-2018), the results show that: both dilated convolution and multi-scale embedding contribute to the performance improvement of the proposed method; and the proposed method outperforms the methods based on state-of-the-art lightweight network in terms of classification accuracy.Comment: 5 pages, 2 figures, 4 tables. Accepted for publication in IEEE MMSP202

    Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice

    Get PDF
    Asynchronous BFT consensus can implement robust mission-critical decentralized services in the unstable or even adversarial wide-area network without relying on any form of timing assumption. Starting from the work of HoneyBadgerBFT (CCS 2016), several studies tried to push asynchronous BFT towards practice. In particular, in a recent work of Dumbo (CCS 2020), they redesigned the protocol backbone and used one multi-valued validated Byzantine agreement (MVBA) to replace nn concurrent asynchronous binary agreement (ABA) protocols and dramatically improved the performance. Despite those efforts, asynchronous BFT protocols remain to be slow, and in particular, the latency is still quite large. There are two reasons contributing to the inferior performance: (1) the reliable broadcast (RBC) protocols still incur substantial costs; (2) the MVBA protocols are quite complicated and heavy, and all existing constructions need dozens of rounds and take the majority of he overall latency. We first present a new construction of asynchronous BFT that replaces RBC instance with a cheaper broadcast component. It not only reduces the O(n3)O(n^3) message complexity incurred by nn RBCs to O(n2)O(n^2), but also saves up to 67% communications (in the presence of a fair network scheduler). Moreover, our technical core is a new MVBA protocol, Speeding MVBA, which is concretely more efficient than all existing MVBAs. It requires only 6 rounds in the best case and expected 12 rounds in the worst case (by contrast, several dozens of rounds in the MVBA from Cachin et al. [12] and the recent Dumbo-MVBA [32], and around 20 rounds in the MVBA from Abraham et al. [4]). Our new technique of the construction might be of independent interests. We implemented Speeding Dumbo and did extensive tests among up to 150 EC2 t2.medium instances evenly allocated in 15 AWS regions across the globe. The experimental results show that Speeding Dumbo reduces the latency to about a half of Dumbo\u27s, and also doubles the throughput of Dumbo, through all system scales from 4 nodes to 150 nodes. We also did tests to benchmark individual components such as the broadcasts and the MVBA protocols, which may be of interests for future improvements

    Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers

    Get PDF
    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications

    Escaping from Consensus: Instantly Redactable Blockchain Protocols in Permissionless Setting

    Get PDF
    Blockchain technologies have received a great amount of attention, and its immutability is paramount to facilitate certain applications requiring persistent records. However, in many other use-cases, tremendous real-world incidents have exposed the harm of strict immutability. For example, illicit data stored in immutable blockchain poses numerous challenges for law enforcement agencies such as Interpol, and millions of dollars are lost due to the vulnerabilities of immutable smart contract. Moreover, ``Right to be Forgotten (a.k.a. data erasure) has been imposed in new European Union\u27s General Data Protection Regulation, thus causing immutable blockchains no longer compatible with personal data. Therefore, it is imperative (even legally required) to design efficient redactable blockchain protocols in a controlled way. In this paper, we propose a new redaction strategy to decouple the voting stage for redaction from the underlying consensus layer, where a committee with sufficient honest fraction is selected firstly and then the committee members would vote for the redaction. Based on this new strategy, we present a generic approach of designing redactable blockchain protocol in the permissionless setting with instant redaction, applied to both proof-of-stake (PoS) blockchain and proof-of-work (PoW) blockchain with just different instantiations to randomly select ``committee members\u27\u27 according to stake or computational power. Our protocol can maintain the same adversary bound requirements and security assumption as the underlying blockchain (e.g., 1/2 adversary bound and various network environments), which is compatible with most current blockchains requiring only minimal changes. It also offers public verifiability for redactable chains, where any edited block in the chain is publicly verifiable. Compared to previous solutions in permissionless setting, our redaction operation can be completed instantly, even only within one slot for the best-case scenario of PoS instantiation, which is desirable for redacting harmful or sensitive data. Correspondingly, our redaction verification in the blockchain is also instant. Furthermore, we define the first ideal protocol of redactable blockchain following the language of universal composition, and prove that our protocol can achieve the security property of redactable common prefix, chain quality, and chain growth. Finally, we develop a proof-of-concept implementation, and conduct extensive experiments to evaluate the overhead incurred by redactions. The experimental results show that the overhead remains minimal for both online nodes and re-spawning nodes, which demonstrates the high efficiency of our design

    A case report of membrane induction combined with RIA technique for the repair of distal humerus segmentary bone defect

    Get PDF
    Bone nonunion and bone defect are common postoperative complications in clinic. Membrane induction or Ilizarov technique is often used to repair bone defect. Autologous bone is often used for bone defect repair and reconstruction, and the anterior superior iliac spine, posterior superior iliac spine or fibula bone is used as the donor area for bone extraction, but there are problems of donor area complications. In recent years, the development of bone marrow aspiration (RIA) has provided a new alternative way for the source of autogenous bone. We report a 48-year-old female patient with a comminuted supracondylar intercondylar fracture of the left humerus due to a car accident. After 8 months of emergency debridement and suture with Kirschner wire internal fixation, the fracture was found to be unhealed with extensive bone defects. We used membrane induction combined with RIA technology to repair and reconstruct the patients, and found good osteogenesis through late follow-up. In theory, membrane induction technique can realize the reconstruction of large segmental bone defects, but the scope of repair is often limited by the lack of autologous bone source. The emergence and development of RIA technology provides us with a new autologous bone donor area for bone repair and reconstruction surgery. It can provide a large amount of high-quality cancellar bone mud through minimally invasive means. Meanwhile, it can reduce patients’ pain, infection, fracture, aesthetics and other problems caused by iliac bone extraction, and shorten patients’ bed time. Maximize the preservation of the patient’s autologous bone source. For the first time in the world, we reported the combination of membrane induction technology and RIA technology in the treatment of segmental bone defects, providing a new idea for the treatment of bone defects

    Inhibitory effects of Jasminum grandiflorum L. essential oil on lipopolysaccharide-induced microglia activation-integrated characteristic analysis of volatile compounds, network pharmacology, and BV-2 cell

    Get PDF
    Neuroinflammation is considered to have a prominent role in the pathogenesis of Alzheimer’s disease (AD). Microglia are the resident macrophages of the central nervous system, and modulating microglia activation is a promising strategy to prevent AD. Essential oil of Jasminum grandiflorum L. flowers is commonly used in folk medicine for the relief of mental pressure and disorders, and analyzing the volatile compound profiles and evaluating the inhibitory effects of J. grandiflorum L. essential oil (JGEO) on the excessive activation of microglia are valuable for its application. This study aims to explore the potential active compounds in JGEO for treating AD by inhibiting microglia activation-integrated network pharmacology, molecular docking, and the microglia model. A headspace solid-phase microextraction combined with the gas chromatography–mass spectrometry procedure was used to analyze the volatile characteristics of the compounds in J. grandiflorum L. flowers at 50°C, 70°C, 90°C, and 100°C for 50 min, respectively. A network pharmacological analysis and molecular docking were used to predict the key compounds, key targets, and binding energies based on the detected compounds in JGEO. In the lipopolysaccharide (LPS)-induced BV-2 cell model, the cells were treated with 100 ng/mL of LPS and JGEO at 7.5, 15.0, and 30 μg/mL, and then, the morphological changes, the production of nitric oxide (NO) and reactive oxygen species, and the expressions of tumor necrosis factor-α, interleukin-1β, and ionized calcium-binding adapter molecule 1 of BV-2 cells were analyzed. A total of 34 compounds with significantly different volatilities were identified. α-Hexylcinnamaldehyde, nerolidol, hexahydrofarnesyl acetone, dodecanal, and decanal were predicted as the top five key compounds, and SRC, EGFR, VEGFA, HSP90AA1, and ESR1 were the top five key targets. In addition, the binding energies between them were less than −3.9 kcal/mol. BV-2 cells were activated by LPS with morphological changes, and JGEO not only could clearly reverse the changes but also significantly inhibited the production of NO and reactive oxygen species and suppressed the expressions of tumor necrosis factor-α, interleukin-1β, and ionized calcium-binding adapter molecule 1. The findings indicate that JGEO could inhibit the overactivation of microglia characterized by decreasing the neuroinflammatory and oxidative stress responses through the multi-compound and multi-target action modes, which support the traditional use of JGEO in treating neuroinflammation-related disorders

    [18F]AlF-NOTA-ADH-1: A new PET molecular radiotracer for imaging of N-cadherin-positive tumors

    Get PDF
    BackgroundThe cell adhesion molecule (CAM) N-cadherin has become an important target for tumor therapy. The N-cadherin antagonist, ADH-1, exerts significant antitumor activity against N-cadherin-expressing cancers.MethodsIn this study, [18F]AlF-NOTA-ADH-1 was radiosynthesized. An in vitro cell binding test was performed, and the biodistribution and micro-PET imaging of the probe targeting N-cadherin were also studied in vivo.ResultsRadiolabeling of ADH-1 with [18F]AlF achieved a yield of up to 30% (not decay-corrected) with a radiochemical purity of >97%. The cell uptake study showed that Cy3-ADH-1 binds to SW480 cells but weakly binds to BXPC3 cells in the same concentration range. The biodistribution results demonstrated that [18F]AlF-NOTA-ADH-1 had a good tumor/muscle ratio (8.70±2.68) in patient-derived xenograft (PDX) tumor xenografts but a lower tumor/muscle ratio (1.91±0.69) in SW480 tumor xenografts and lowest tumor/muscle ratio (0.96±0.32) in BXPC3 tumor xenografts at 1 h post-injection (p.i.) These findings were in accordance with the immunohistochemistry results. The micro PET imaging results revealed good [18F]AlF-NOTA-ADH-1 tumor uptake in pancreatic cancer PDX xenografts with strong positive N-calcium expression, while lower tumor uptake in SW480 xenografts with positive expression of N-cadherin, and significantly lower tumor uptake in BXPC3 xenografts with low expression of N-cadherin, which was consistent with the biodistribution and immunohistochemistry results. The N-cadherin-specific binding of [18F]AlF-NOTA-ADH-1 was further verified by a blocking experiment involving coinjection of a non radiolabeled ADH-1 peptide, resulting in a significant reduction in tumor uptake in PDX xenografts and SW480 tumor.Conclusion[18F]AlF-NOTA-ADH-1 was successfully radiosynthesized, and Cy3-ADH-1 showed favorable N-cadherin-specific targeting ability by in vitro data. The biodistribution and microPET imaging of the probe further showed that [18F]AlF-NOTA-ADH-1 could discern different expressions of N-cadherin in tumors. Collectively, the findings demonstrated the potential of [18F]AlF-NOTA-ADH-1 as a PET imaging probe for non-invasive evaluation of the N-cadherin expression in tumors

    Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway

    Get PDF
    Signal Transducer and Activator of Transcription 3 (STAT3), a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mouse xenograft model, in the present study we evaluated the effect of the ethanol extract of Hedyotis diffusa Willd (EEHDW) on tumor growth in vivo and investigated the underlying molecular mechanisms. We found that EEHDW reduced tumor volume and tumor weight, but had no effect on body weight gain in CRC mice, demonstrating that EEHDW can inhibit CRC growth in vivo without apparent adverse effect. In addition, EEHDW treatment suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax. These results suggest that suppression of the STAT3 pathway might be one of the mechanisms by which EEHDW treats colorectal cancer
    • …
    corecore