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Background: The cell adhesion molecule (CAM) N-cadherin has become an

important target for tumor therapy. The N-cadherin antagonist, ADH-1, exerts

significant antitumor activity against N-cadherin-expressing cancers.

Methods: In this study, [18F]AlF-NOTA-ADH-1 was radiosynthesized. An in vitro

cell binding test was performed, and the biodistribution and micro-PET imaging

of the probe targeting N-cadherin were also studied in vivo.

Results: Radiolabeling of ADH-1 with [18F]AlF achieved a yield of up to 30% (not

decay-corrected) with a radiochemical purity of >97%. The cell uptake study

showed that Cy3-ADH-1 binds to SW480 cells but weakly binds to BXPC3 cells in

the same concentration range. The biodistribution results demonstrated that

[18F]AlF-NOTA-ADH-1 had a good tumor/muscle ratio (8.70±2.68) in patient-

derived xenograft (PDX) tumor xenografts but a lower tumor/muscle ratio (1.91

±0.69) in SW480 tumor xenografts and lowest tumor/muscle ratio (0.96±0.32)

in BXPC3 tumor xenografts at 1 h post-injection (p.i.) These findings were in

accordance with the immunohistochemistry results. The micro PET imaging

results revealed good [18F]AlF-NOTA-ADH-1 tumor uptake in pancreatic cancer

PDX xenografts with strong positive N-calcium expression, while lower tumor

uptake in SW480 xenografts with positive expression of N-cadherin, and

significantly lower tumor uptake in BXPC3 xenografts with low expression of

N-cadher in, which was consistent with the biodistr ibut ion and

immunohistochemistry results. The N-cadherin-specific binding of [18F]AlF-

NOTA-ADH-1 was further verified by a blocking experiment involving

coinjection of a non radiolabeled ADH-1 peptide, resulting in a significant

reduction in tumor uptake in PDX xenografts and SW480 tumor.

Conclusion: [18F]AlF-NOTA-ADH-1 was successfully radiosynthesized, and Cy3-

ADH-1 showed favorable N-cadherin-specific targeting ability by in vitro data.
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The biodistribution and microPET imaging of the probe further showed that [18F]

AlF-NOTA-ADH-1 could discern different expressions of N-cadherin in tumors.

Collectively, the findings demonstrated the potential of [18F]AlF-NOTA-ADH-1 as

a PET imaging probe for non-invasive evaluation of the N-cadherin expression

in tumors.
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1 Introduction

Tumor invasion and metastasis are the key processes in tumor

deterioration and are associated with poor prognosis. In recent

years, a growing number of studies have found that the metastasis of

most tumors depends on the epithelial-mesenchymal transition

(EMT) (1–4). EMT is a biological developmental process

characterized by epithelial cells losing the epithelial features and

acquiring mesenchymal properties (5). The process of EMT is

accompanied by epithelial cadherin (E-cadherin) down-regulation

and the concomitant up-regulation of neural cadherin (N-cadherin)

(6–9). Transfection of N-cadherin into tumor cells with negative N-

cadherin expression resulted in significantly higher aggressiveness,

while the intercellular adhesion mediated by E-cadherin

disappeared, and the expression of E-cadherin was significantly

decreased (10, 11). N-cadherin is absent or has low expression in

normal epithelial cells, and abnormal expression of N-cadherin has

been associated with epithelial malignancies such as breast cancer,

prostate cancer, and uroepithelial carcinoma (12, 13). Considering

the high expression of N-cadherin in tumors, it can be an excellent

target for tumor treatment and diagnosis. Controlling tumor

metastasis and reducing drug resistance by inhibiting N-cadherin

may be an effective treatment strategy (14, 15). The pentapeptide

ADH-1 is an N-cadherin inhibitor (12, 16–19) that specifically

binds to N-cadherin through hydrophobic and electrostatic

interactions, involving the interaction between the Trp2 residue

of the binding site of N-cadherin with the Ala fragment of the

ADH-1 molecule (20). Applying ADH-1 to tumors can lead to

tumor vascular angiolysis and apoptosis (21–23), but does not

damage normal mature blood vessels (22, 23). A combination of

ADH-1 and melphalan was explored in the treatment of melanoma

in mice, which significantly reduced tumor growth. The effect was

equivalent to 30 times the dose of melphalan alone (23). The

enhanced response of ADH-1 to melphalan was associated with

increased tumor cell apoptosis, increased DNA adduct formation,

and altered intracellular signaling. Clinical experiments

investigating ADH-1 (phase 1 and phase 2 single-agent studies)

showed anti-cancer activity in patients with N-cadherin–positive

tumors (17, 24).

As an emerging field, molecular imaging has attracted

significant attention and developed quickly in recent years. The

combination of small peptides or small molecules with positron
02
nuclide labeling can be used as new molecular probes for functional

imaging (25). Developing a molecular probe targeting N-cadherin

for noninvasive imaging of N-cadherin in vivo has potential

application value in tumor diagnosis, drug development, dose

optimization, and treatment monitoring. In this study, a novel

PET probe [18F]AlF-NOTA-ADH-1 was prepared by using ADH-1

peptide, and the feasibility of [18F]AlF-NOTA-ADH-1 for the

detection of N-cadherin positive tumors was explored.
2 Materials and methods

2.1 General

The NOTA was purchased from Macrocyclic, Inc; protected

amino acids, other peptide synthesis reagents, and resins were

obtained from Nanchang tanzhenbio Co., Ltd; anhydrous

aluminum chloride (AlCl3) and sodium acetate were purchased

from Alfa Aesar (China) Chemicals Co., Ltd; and trifluoroacetic

acid (TFA) was obtained from Shanghai Aladdin Biochemical

Technology Co., Ltd. (China). Reagents, including phosphate-

buffered saline (PBS) and cell culture medium, were obtained

from Sigma-Aldrich. Fetal bovine serum (FBS) was purchased

from Biological Industries (BI) company. All reagents and

solvents were commercial products and used without further

purification. The Siemens Cyclotron produced [18F] fluoride by

bombarding a [18O] H2O target with 12.5 MeV protons. Analytical

HPLC (high-performance liquid chromatography) was performed

on an Agilent 1200 system with a reversed-phase column (Agilent

Zorbax ODS, 250 × 4.6 mm). Mass spectra were obtained on a Q-T

of a premier UPLC system equipped with an electrospray interface

(ESI) (Waters, USA). A g-counter (CAPRA-R, Capintec, Inc.,

Ramsey, New Jersey, USA) was used to measure the radiation

value of the biological distribution experiment. Small animal

imaging was performed using a micro-PET/CT scanner (Siemens

Inveon Multimodality System, Germany).
2.2 Synthesis of peptides

Scheme 1 describes the peptides synthesized by the solid-phase

synthesis method (26). The purity of the peptides, including
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https://doi.org/10.3389/fonc.2023.1126721
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1126721
NOTA-ADH-1 and Cy3-ADH-1, was identified by high-

performance liquid chromatography (HPLC), and the molecular

weight was identified by mass spectrometry. They were stored at

-20°C after freeze-drying.
2.3 Cell binding studies

Human colorectal carcinoma SW480 and pancreatic BxPC3 cell

lines were purchased from the Institute of Biochemistry and Cell

Biology, the Shanghai Institute for Biological Sciences, and the

Chinese Academy of Sciences. Specific binding studies were
Frontiers in Oncology 03
evaluated on SW480 and BxPC3 tumor cells. SW480 and BxPC3

cells were cultured in a medium containing high glucose and

supplemented with fetal bovine serum, glutamine, and penicillin-

streptomycin, and the culture medium was changed every other

day. Cells were expanded in tissue culture pans in humidified air

containing 5% carbon dioxide at 37°C and detached with trypsin

and phosphate-buffered saline for further cell culture when cells

were confluent.

To assess the binding ability of the peptide, the Cy3-ADH-1

peptide was synthesized. An equal number (1×105) of SW480 and

BxPC3 cells were seeded in 6-well plates. After overnight

incubation, 0.5 ml of culture medium and 0.5 ml of Cy3-ADH-1
A

B

SCHEME 1

The synthesis process of the peptides of NOTA-ADH-1 (A) and Cy3-ADH-1 (B).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1126721
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1126721
solution with concentrations 5 mM, 20 mM, 50 mM, 100 mM, and

200 mM were added to the cell chambers in the dark, respectively,

and incubated at 37°C in a 5% CO2 incubator for half an hour.

Subsequently, the solution in the 6-well plates was discarded, and

the cells were fixed with paraformaldehyde for 10 min. After

washing with PBS three times, the cells were mounted in a

mounting medium containing DAPI for 15 minutes and then

visualized by an Olympus IX71 fluorescence microscope

(Olympus, Japan).

A competitive binding assay was performed on SW480 tumor cells.

Therefore, 1×105 SW480 cells were placed in 3-well plates, and 0.5 ml

of unlabeled ADH-1 solution of 0 mM, 50 mM, and 200 mM
concentration were added to each well and incubated at 37°C in

binding buffer. After 30 minutes of reaction, 0.5 ml of 10 mM Cy3-

ADH-1 solution was added and then incubated in binding buffer at 37°

C for another 1 hour to allow fluorescently-labeled polypeptides and

excess non-labeled polypeptides to combine with tumor cells. The cells

were then washed 3 times with 1ml PBS solution for 5 min each time

and were mounted in a mounting medium containing DAPI for 15

minutes. The uptake intensity of SW480 colon cancer cells to

fluorescently-labeled polypeptides was observed and measured by a

fluorescence microscope.
2.4 Preparation of [18F]AlF-NOTA-ADH-1

Scheme 2 describes the radiosynthesis routine of [18F]AlF-

NOTA-ADH-1 (27–31). 100ug of NOTA-ADH-1 was dissolved in

2ml axygen in a centrifuge tube with 400ul pure water; AlCl3 (26.0

nmol; 13.0 mL; 2.0 mM) in sodium acetate buffer solution (pH 4;

0.2 M) and 1mL acetonitrile was added to the reactor and mixed

well. 500ml 18F target water (1000-1500mCi) was added to the

reactor and heated at 100°C for 10min; 5uL of crude production

point samples were collected for Thin-layer chromatography

(TLC) detection. The remaining crude product was slightly

cooled and then transferred to the pre-conditioned HLB

cartridge with 15ml water and washed with 10ml PBS and 20ml

water, respectively. The product was finally eluted with 2.0 mL of

ethanol and water at a ratio of 1:1 (V/V), filtered using a sterile

filtration membrane, and collected in the receiving bottle. The
Frontiers in Oncology 04
product (310-500mCi) was then diluted into a solution containing

5% ethanol using normal saline for injection, and samples were

taken for quality control.
2.5 Determination of radiochemical purity

The radiochemical yield was monitored by TLC (50%

acetonitrile), and the radiochemical purity was confirmed by

HPLC using a Zorbax ODS(C18) 4.6 * 250 mm analysis column.

The HPLC included the mobile phase A, a 0.1% acetonitrile solution

of trifluoroacetic acid (TFA), and phase B, an aqueous solution of

0.1% TFA. The mobile phases were performed to carry out a

gradient elution. The ratio of phase A to phase B at 0 min was

10%:90% and gradually rose to 70%:30% at 20 min, which was

maintained at a flow rate of 1mL/min.
2.6 In vitro stability determination

The stability of [18F]AlF-NOTA-ADH-1 was tested in PBS and

bovine serum. In brief, 3.7 MBq of[18F]AlF-NOTA-ADH-1 was

pipetted into 0.5 mL of PBS and incubated in PBS at room

temperature or bovine serum at 37°C. For the study, an aliquot of

the solution was directly taken at 1, 6, and 8 h after incubation, and

the radiochemical purity was determined by radio-TLC or radio-

HPLC under identical conditions.
2.7 Lipid-water partition coefficient

The partition coefficient of [18F]AlF-NOTA-ADH-1 was

measured by assessing the distribution of radioactivity in 1-

octanol and phosphate buffer in a 2 mL centrifuge tube. 20µL of

[18F]AlF-NOTA-ADH-1 solution was added to a tube containing

0.5 mL each of 1-octanol and PBS. The mixture was vortexed and

centrifuged (5,000 r/min) for 5 min. A total of 2 samples (50 mL)
were collected from each layer and were assayed in a g counter.

Partition coefficients (log Po/w) are shown as the log counts in 1-

octanol vs. PBS layers (n=3).
SCHEME 2

The radiosynthesis routine of 18F -AlF-NOTA-ADH-1.
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2.8 Tumor implantation in mice

All animal experiments were performed in accordance with and

approved by the Institutional Animal Care and Use Committee

guidelines of the First Affiliated Hospital of Zhejiang University

School of Medicine. BALB/c nu/nu mice (female, 20 ± 3 g, 4- to 6-

week-old; Department of Laboratory Animal Science, Zhejiang

University) were used in this study. The SW480 and BxPC3

xenografts were generated, and 5×106 tumor cells were

subcutaneously injected into the flanks of female athymic nude

mice. The PDX-bearing mouse models were established as follows.

Pancreatic cancer (diagnosed as pancreatic ductal adenocarcinoma)

tissues were obtained from the surgery of a 67-year-old female

patient. Written informed consent was obtained from the patient,

and the research protocol was approved by the Clinical Research

Ethics Committee of the First Affiliated Hospital of Zhejiang

University School of Medicine. The sample was sectioned into

about 1mm3 pieces, and the tumor tissues were subcutaneously

implanted into BALB/c nu/nu mice flanks. Mice were allowed free

access to sterile water and food and were kept under strict disease-

free conditions with controlled temperature (~25°C), humidity (50-

70%), and circadian rhythms (12-hour light/dark cycles). All

necessary procedures were carried out to minimize discomfort

and avoid the waste of animals. The length and width of the

tumor were measured every other day. Biodistribution studies and

positron emission tomography in mice were performed after the

tumor volume reached 150 to 200 mm3.
2.9 Biodistribution in normal mice

Thirty SPF Kunming mice weighing 18-20g were randomly

divided into 6 groups (n=5). As described above, [18F]AlF-NOTA-

ADH-1 was purified and separated by HPLC analysis. Each mouse

was injected with a dose of 0.74MBq (20mCi) through a caudal vein.

Blood was collected from the orbit, the mice were sacrificed, and the

brain, heart, lung, liver, spleen, kidney, stomach, intestine, muscle,

bone and other organs were taken at 2 min, 5 min, 15 min, 30 min,

60min and 120min after injection. The radioactivity results were

recorded as injected radioactivity per gram of tissue (% ID/g)

corrected for background and decay.
2.10 Biodistribution in the tumor
xenograft model

The BALB/c nude mice were randomized into different tumor

models (SW480, BxPC3, and pancreatic PDX), including 5 mice per

group. Each nude mouse was injected with 0.74MBq (20mCi) [18F]
AlF-NOTA-ADH-1 through the caudal vein. Blood was collected

from the orbit, and the mice were dissected to collect the brain,

heart, lung, liver, liver, spleen, stomach, intestine, muscle, bone and

others at 30 min, 30min, 60min, 90min and 120min after injection.

In the blocked group, the study was performed with a saturating

dose of ADH-1 (20 mg/kg of mouse body weight) intravenously
Frontiers in Oncology 05
administered 60min before the intravenous injection of [18F]AlF-

NOTA-ADH-1 in the pancreatic PDX model and SW480 xenograft

model. The mice in the tumor xenograft model were sacrificed 1h

after [18F]AlF-NOTA-ADH-1 injection. The nude mice were

dissected, and tumor tissues and related tissues (blood, brain,

heart, lung, liver, spleen, kidney, stomach, intestine, muscle and

bone) were weighed, and their radioactivity was measured by g-
counter. The radioactivity results were recorded as % ID/g.
2.11 Micro-PET imaging

[18F]AlF-NOTA-ADH-1 was evaluated by micro-PET imaging

on nude mice bearing a PDX tumor, SW-480 and BxPC3 tumor

xenografts. Each tumor-bearing nude mouse was injected with

3.7MBq [18F]AlF-NOTA-ADH-1 via the tail vein. After being

anesthetized with isoflurane, tumor-bearing nude mice were

imaged using a micro-PET/CT scanner at 60 minutes post-

injection under continuous isoflurane inhalation using a nasal

mask with a connecting tube. Micro-PET/CT scanning was

performed after low-dose 3D acquisition CT scanning at 10

minutes per bed. A blocking study was conducted, in which a

saturating dose of unlabeled ADH-1 (20 mg/kg of mouse body

weight) was intravenously administered 60 min before the

intravenous injection of [18F]AlF-NOTA-ADH-1.

The three-dimensional volume of interest (VOI) was used to assess

the standard uptake value (SUV) of selected organs. The Seimens

Inveon analysis software configured with micro-PET/CT was used to

delineate the region of interest along the edge of the tumor and each

normal tissue on the PET image. Subsequently, the SUV of each region

of interest was measured, and the tumor/non-tumor ratio (T/NT)

between the tumor and normal tissue was measured.
2.12 Immunohistostaining

Tumor tissues were fixed in 10% methanol for 4 hours. The

samples were then dehydrated in graded ethanol, embedded in

paraffin, and sliced into 5 mm sections. Sections were incubated with

N-cadherin (mouse monoclonal antibody, 1:200, Abcam) and then

goat anti-mouse secondary antibodies (Abcam diluted 1:200). The

secondary antibodies were formed by binding horseradish

peroxidase (HRP) and Goat anti-mouse IgG. Then, the sections

were stained with diaminobenzidine (DAB )staining solution. DAB

generates brown precipitates under the catalysis of HRP, thereby

amplifying signals and developing colors. After a series of routine

processing, immunohistochemical images were finally obtained.
2.13 Statistical analysis

SPSS 26.0 software was used for analysis, and all quantitative

data in the experiment were expressed as mean ± SD. t-test analysis

was used for the comparison of differences between two groups;

analysis of variance was used for comparison between multiple
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organizations. A p-value less than 0.05 was considered

statistically significant.
3 Results

3.1 Synthesis of peptides

A standard FMOC solid-phase synthesis was used to synthesize

NOTA-ADH-1 and Cy3-ADH-1 (Scheme 1). The synthesized peptide

was characterized by High Resolution Mass Spectrometry (HRMS)

(Supplementary Figures S1, S2), and its purity was determined by

HPLC, revealing a chemical purity of greater than 95%.
3.2 In vitro cell binding test

The in vitro results showed that the degree of SW480 cell uptake

of Cy3-ADH-1 was concentration-dependent, exhibiting an

increasing fluorescence intensity with increasing Cy3-ADH-1

concentration. In contrast, no obvious fluorescence signal was

found in the blank control tube (Figure 1). Competitive inhibition

assays demonstrated that unlabeled ADH-1 significantly affected

the uptake of Cy3-ADH-1 in SW480 cells, with the 200nM

inhibition group showing a substantially higher uptake than the

50nM inhibition group (Figure 2). No significant uptake (or

fluorescence signal) of Cy3-ADH-1 by BXPC3 cells was observed

in the concentration range of 5 mM to 200 mM (Figure 3).
3.3 Radiochemical synthesis

[18F]AlF-NOTA-ADH-1 was successfully prepared using the [18F]

AlF method (Scheme 2). Thin-layer chromatography was performed

on the reaction solution. As shown in Figure 4, the fluoride ion peak is

at the origin, and the Rf of product [18F]AlF-NOTA-ADH-1 is 0.5. The

non-decay corrected radiochemical yield of [18F]AlF-NOTA-ADH-1

was 28.07 ± 2.42% (n=20), the radioactivity of the radiotracer was 310-

500mCi, and HPLC analysis showed that the retention time of the drug

was 9.4 min. The radio molar activity of the drug was 153.55 ± 28.25

GBq/mmol, and the radiochemical purity was 98.1 ± 0.6% (Figure 5).

The total time of the radiosynthesis reaction was about 30minutes. The

[18F]AlF-NOTA-ADH-1 product was colorless and transparent, with a

pH meter of 6.5. The drug is sterile, with bacterial endotoxin levels per

1mL less than 10 EU. The measured partition coefficient of the product

was -2.45 ± 0.09, indicating that the probe was hydrophilic. The drug

was stable at 37 °C in PBS and calf serum, and the radiochemical purity

was about 95.5 and 95.0%, respectively, after 8 h. The results indicated

that [18F]AlF-NOTA-ADH-1 was stable in vitro.
3.4 Biological distribution of [18F]AlF-
NOTA-ADH-1 in normal mice

The research results showed that [18F]AlF-NOTA-ADH-1 had

rapid blood clearance. After injection of [18F]AlF-NOTA-ADH-1,
Frontiers in Oncology 06
the radioactive concentration of [18F]AlF-NOTA-ADH-1 in blood

was 18.84 ± 1.95%ID/g at 2 min, 8.77 ± 1.37%ID/g at 5 min, 3.79 ±

1.19%ID/g at 15 min, and 2.28 ± 0.81%ID/g at 30 min, which

decreased significantly to 1.04 ± 0.36%ID/g at 120min after

injection. [18F]AlF-NOTA-ADH-1 is widely distributed in the

kidney and the intestines, indicating that [18F]AlF-NOTA-ADH-1

is mainly excreted from the urinary system and hepatobiliary
FIGURE 1

Cell binding assay showed the effect of Cy3-ADH-1 at different
concentrations on colorectal cancer SW480 cells. 0mM (A–C),5mM
(D–F), 10mM (G–I), 50mM (J–L), 100mM(M–O), 200mM(P–R).
FIGURE 2

SW480 cell competition inhibition test showed that non-labeled
ADH-1 reduced levels of the cellular uptake of Cy3-ADH-1. No-
Blocked (A–C), Blocked group at a concentration of 50nM (D–F),
Blocked group at a concentration of 200 nM (G–I).
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systems. In addition, lower uptake was observed in the lungs, and

muscle tissues and almost no uptake was seen in the brain tissue,

suggesting that the probe does not efficiently cross the blood-brain

barrier (Table 1).
3.5 Biological distribution of [18F]AlF-
NOTA-ADH-1 in tumor-bearing nude mice

The biological distribution of normal tissues in tumor-bearing

nude mice was similar to that of normal mice, with high radioactive

uptake in the liver and kidneys (Tables 2–4). To investigate the

tumor uptake of [18F]AlF-NOTA-ADH-1 in the pancreatic PDX

xenograft model, tumors, blood, and tissue/organs were excised to

measure the radioactivity. The highest tumor uptake was observed

at 60 min after injection, suggesting that this may be an appropriate

time for tumor imaging. In the blocking group, the radioactive
Frontiers in Oncology 07
uptake of the tumor was 3.75 ± 0.07%ID/g at 60 min p.i,

significantly lower than that in the non-blocking inhibition group

(t=5.304, p=0.006). In SW480 tumor-bearing nude mice, the tumor/

muscle (T/M) ratio was the highest at 60min (1.91 ± 0.69). In the

blocking inhibition experiment, the radioactive uptake of the tumor

was 1.07 ± 0.57%ID/g at 60min p.i, lower than that in the non-

blocking group (p=0.004). In the BxPC3 tumor model, no

significant uptake of [18F]AlF-NOTA-ADH-1 was observed in the

tumor tissue.
3.6 In-vivo micro-PET imaging studies

Micro PET studies of [18F]AlF-NOTA-ADH-1 were performed

on nude mice bearing pancreatic PDX, Human Colorectal

Carcinoma SW480, and pancreatic BxPC3 tumor xenografts at 60

min p.i. A significantly increased radioactive uptake of tumor tissue

was shown in the PDX tumor model, with a tumor/muscle ratio of

8.069±2.832. Unlabeled ADH-1 inhibitors can significantly reduce

the T/NT ratios, with a T/Bone of 2.263 ± 0.465, and a T/Lung of

5.062 ± 0.805 (Figure 6). The T/NT ratios showed significant

differences between the non-blocked group and the blocked

group, including T/Muscle (p=0.003), T/Bone (p=0.023), T/

Kidney (p=0.0001), T/Liver (p=0.002), and T/Lung (p=0.001).

Immunohistochemical staining showed strong positive N-calcium

adhesion expression in tumor tissue, supporting the high specificity

of [18F]AlF-NOTA-ADH-1 binding to tumors expressing N-

calcium adhesion in vivo.

As shown in Figure 7, micro-PET imaging of the SW480 tumor-

bearing nude mouse model 60 min after injecting [18F]AlF-NOTA-

ADH-1 revealed high radioactive uptake in the tumor with a tumor/

muscle ratio of 1.443±0.121, T/Bone of 1.903±0.273, and T/Lung of

3.359±2.998, unlabeled ADH-1 inhibitors can significantly reduce

the T/NT ratios, too. A significant difference in T/NT ratios was

observed between the non-blocked group and the blocked group,

including T/Muscle (p=0.019), T/Bone (p=0.002), T/Liver

(p=0.001), and T/Lung (p=0.008). Immunohistochemical staining

showed positive N-calcium adhesion expression in the tumor tissue.

However, no significant increase in radioactive uptake was observed

in the tumor tissues of BxPC3-bearing tumor model mice, with a

tumor/muscle ratio of 1.018 ± 0.498, T/Bone 0.055 ± 0.022, and T/

lung 0.291 ± 0.195. Immunohistochemical staining of N-cadherin

showed low expression in tumor tissues (Figure 8).
FIGURE 4

The analytical chromatograms from radio TLC of the crude product.
FIGURE 3

In different concentrations of Cy3-ADH-1, BxPC3 cells showed no
obvious fluorescence signal. 10 uM (A–C),50uM (D–F),100uM (G–I)
and 200uM (J–L).
FIGURE 5

Radiochromatogram of column purified [18F]AlF-NOTA-ADH-1.
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4 Discussion

Recent studies have found that the loss of E-cadherin expression

in some tumors is often accompanied by the up-regulation of N-

cadherin expression (32, 33), which is also known as “the cadherin

switch” (33, 34). N-cadherin molecule, also known as neural

cadherin, has a molecular weight of 140KD and is mainly

expressed in mesenchymal cells, endothelial cells, muscle cells,

and hematopoietic stem cells (11). However, recent studies have
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investigated the up-regulation of N-cadherin in a variety of tumors

and its correlation with enhanced tumor invasiveness. In breast

cancer, N-cadherin interacts with fibroblast growth factor receptor

(FGFR) (35), activates signal pathways, and induces the expression

of matrix metalloproteinase-9 (MMP-9) (36), thereby promoting

tumor invasion and metastasis (20, 35). In bladder cancer,

malignant melanoma, and prostate cancer, N-cadherin promotes

tumor cell invasion by activating signaling pathways and inhibits

tumor cell apoptosis, which is conducive to tumor cell survival (37,
TABLE 1 Biological distribution of [18F]AlF-NOTA-ADH-1 in normal mice(�x ± SD, %ID/g).

Organs 2min 5min 15min 30min 60min 120min

Brain 1.05±0.25 0.87±0.30 0.46±0.10 0.39±0.10 0.22±0.05 0.58±0.68

Heart 9.15±0.91 7.54±2.08 3.57±0.82 3.64±0.66 1.19±0.70 1.01±0.15

Lung 6.26±1.29 4.74±1.69 3.05±0.40 2.15±0.27 2.19±0.42 1.62±0.35

Liver 8.01±1.26 7.09±2.03 14.76±1.11 16.14±2.34 21.62±3.53 13.73±2.35

Spleen 3.84±1.47 5.09±1.29 3.08±0.55 2.66±0.22 1.81±0.57 1.24±0.30

Kidney 24.92±1.12 36.52±2.00 22.06±1.43 25.74±1.17 22.20±1.92 15.18±0.96

Stomach 5.63±1.98 7.27±1.89 4.26±0.55 4.78±0.98 2.32±0.56 1.55±0.20

Intestines 5.39±0.84 6.06±1.42 5.73±0.64 6.28±0.59 5.27±1.09 4.18±0.53

Muscle 3.97±0.56 5.91±1.16 2.79±0.68 3.32±1.77 1.08±0.21 1.22±0.70

Bone 5.30±0.94 6.71±0.62 3.72±0.29 3.09±0.26 1.51±0.36 1.38±0.73

Skin 5.60±0.85 5.08±2.74 3.11±1.47 2.59±0.96 1.85±1.48 1.10±0.96

Blood 18.84±1.95 8.77±1.37 3.79±1.19 2.28±0.81 2.15±0.18 1.04±0.36
fro
TABLE 2 The biodistribution of [18F]AlF-NOTA-ADH-1 in PDX xenograft model(�x ± SD, %ID/g.).

Organs
Non-blocking group Blocking group

30min 60min 90min 120min 60min

Blood 0.69±0.22 0.40±0.18 0.39±0.11 0.41±0.07 0.35±0.14

Brain 0.62±0.14 0.99±0.47 0.63±0.18 0.51±0.27 0.86±0.21

Heart 2.54±0.97 0.96±0.17 0.95±0.25 0.81±0.28 0.82±0.02

Lung 4.38±1.33 3.41±0.44 3.52±1.76 2.07±0.94 2.37±0.14

Liver 12.28±1.23 11.31±2.30 10.43±1.97 9.20±1.66 10.35±1.15

Spleen 1.81±0.48 1.41±0.24 1.13±0.03 0.86±0.25 1.25±0.20

Kidney 17.75±5.89 15.82±1.17 12.50±0.89 8.52±2.09 11.62±2.40

Stomach 3.23±1.69 3.40±0.12 6.16±1.58 1.60±1.04 2.24±0.16

Intestines 3.82±0.12 2.14±0.04 3.93±2.67 2.53±2.00 2.49±0.33

Muscle 1.41±0.20 1.56±0.07 2.03±0.05 1.18±0.60 1.68±0.06

Bone 1.74±0.81 2.29±0.96 1.65±1.30 0.74±0.35 2.16±0.09

Skin 0.11±0.04 0.95±0.46 1.51±0.02 1.56±0.66 0.54±0.14

Tumor 8.04±1.82 10.76±2.16 7.18±0.53 4.93±1.65 3.75±0.07

T/Blood 10.72± 1.02 19.21± 2.20 13.54± 0.35 10.27±1.36 9.39± 0.10

T/Muscle 5.69±0.72 8.70±2.68 4.15±1.86 3.97±1.56 2.12±0.06
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38). These studies suggest that N-cadherin can not only directly

induce cell migration but also promote the survival of tumor cells

and facilitate tumor cell invasion. In addition, studies have also

shown that N-cadherin-mediated adhesion between tumor cells and

mesenchymal cells plays an important role in the process of tumor
Frontiers in Oncology 09
dissemination and metastasis (34). For example, in the invasive

growth of melanoma (39), N-cadherin mediates the interaction

between tumor cells and other cells in the dermis. It promotes

fibroblasts to form extracellular matrix scaffolds and secrete

cytokines and proteases by a paracrine mechanism (40). N-
TABLE 3 The biodistribution of [18F]AlF-NOTA-ADH-1 in SW480 xenograft model(�x ± SD, %ID/g).

Organs
Non-blocking group Blocking group

30min 60min 90min 120min 60min

Blood 0.30±0.15 0.28±0.06 0.08±0.01 0.12±0.04 0.27±0.09

Brain 0.18±0.05 0.23±0.14 0.19±0.05 0.39±0.24 0.20±0.11

Heart 1.09±0.12 0.67±0.15 0.48±0.08 0.55±0.12 0.59±0.07

Lung 2.58±0.28 1.96±0.56 1.55±0.76 2.34±0.37 1.58±0.45

Liver 8.37±0.87 8.31±3.19 9.32±0.78 8.65±1.56 5.32±1.65

Spleen 0.86±0.26 0.82±0.38 0.71±0.23 0.71±0.15 0.88±0.33

Kidney 8.81±1.80 10.27±3.47 5.73±0.80 5.53±0.91 6.54±2.20

Stomach 5.53±2.81 7.07±0.55 3.13±1.66 1.24±0.01 5.19±1.01

Intestines 1.60±0.78 3.84±2.01 1.87±0.71 1.57±0.97 2.53±0.72

Muscle 0.99±0.19 1.99±1.02 0.78±0.30 0.85±0.14 1.59±0.87

Bone 1.24±0.16 1.63±0.39 0.64±0.17 0.86±0.06 0.84±0.21

Skin 1.01±0.56 1.23±0.37 1.03±0.16 0.95±0.15 1.30±0.29

Tumor 1.73±0.11 2.08±1.64 0.96±0.15 0.73±0.67 1.07±0.57

T/Blood 5.77±0.13 7.42±1.01 9.6±0.76 6.08±0.35 3.96±0.33

T/Muscle 1.75±0.47 1.91±0.69 1.23±0.92 0.86±0.23 1.03±0.56
TABLE 4 The biodistribution of [18F]AlF-NOTA-ADH-1 in BxPC3 xenograft models(�x ± SD, %ID/g).

Organ 30min 60min 90min 120min

Blood 0.25±0.05 0.18±0.11 0.09±0.06 0.25±0.19

Brain 0.95±0.61 1.71±0.05 0.49±0.02 0.43±0.29

Heart 1.93±0.46 3.83±0.29 1.70±0.28 1.04±0.06

Lung 2.60±0.23 1.95±0.12 1.06±0.14 0.86±0.56

Liver 6.80±1.65 8.53±1.69 6.73±1.20 5.25±1.51

Pancreas 0.23±0.08 0.61±0.09 0.49±0.23 0.65±0.11

Kidney 9.33±0.73 10.24±0.47 9.39±0.75 6.61±0.87

Stomach 3.12±0.36 2.96±0.42 2.14±0.22 1.78±0.19

Intestines 1.52±0.39 3.55±0.29 0.44±0.21 0.52±0.08

Muscle 1.03±0.40 1.05±0.58 0.91±0.08 0.58±0.28

Bone 2.17±0.19 3.45±0.10 1.90±0.11 1.69±0.39

Skin 3.00±0.74 3.31±0.43 1.23±0.14 0.84±0.19

Tumor 0.89±0.12 1.07±0.36 0.60±0.12 0.37±0.07

T/Blood 3.18± 0.08 4.22±0.23 5.45±0.10 1.42±0.13

T/Muscle 0.86±0.21 0.96±0.32 0.66±0.19 0.63±0.23
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cadherin also plays an essential role in angiogenesis and maturation.

Blocking the function of N-cadherin by inhibitory antibodies

during embryonic development led to the defect of pericyte

recruitment and interfered with angiogenesis (41).

Therefore, N-cadherin can promote tumor invasion and

metastasis by inducing cell migration, inhibiting apoptosis,

mediating adhesion between tumor cells and mesenchymal cells,

and promoting angiogenesis (22). Therefore, N-cadherin could be
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used as a new target for tumor diagnosis and treatment. ADH-1 is

the main N-cadherin antagonist, which significantly alters N-

cadherin adhesion, proliferation, and migration, as well as

enhancing cell apoptosis in many tumors (11, 18, 42). The phase

1 clinical study involving sixteen human patients with metastatic

melanoma, including six patients who had not responded to

melphalan alone, revealed that treatment with ADH-1 plus

melphalan was effective. Within three months of treatment, eight
FIGURE 6

The in-vivo micro-PET/CT imaging of subcutaneous pancreatic PDX xenograft model at 60 min after injection of [18F]AlF-NOTA-ADH-1, high
radioactive uptake of tumor tissue in the unblocked group (A–D) and significantly decreased in the blocked group (E–H). Immunohistochemical
staining showed a significantly higher expression of N-calcium adhesion (I×400); T/NT ratios in the unblocked group and blocked group (J).
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patients showed a complete response, two had a partial response,

two had stable disease, and four had progressive disease (23).

Another phase I clinical study showed that the stable period of

two patients with ovarian cancer was prolonged (17). However, as a

targeted tumor therapy, ADH-1 actually benefits a small number of

patients due to the biological heterogeneity of tumors. PET imaging

can be used to identify tumor types, screen the patient population

that could benefit from targeted therapy, evaluate the treatment

response, and predict the treatment effect. In this study, the [18F]

AlF-labeled ADH-1 probe was radiosynthesized for N-cadherin

specific-targeting imaging.

Cy3-labeled ADH-1 and the labeled precursor NOTA-ADH-1

we r e s yn th e s i z ed by th e FMOC me thod , and th e

immunofluorescence (IF) staining technique was used to research
Frontiers in Oncology 11
the cellular uptake of compounds as well as the inhibition test. In

addition, Cy3-ADH-1 could bind to SW480 cells at 5 mM, and

orange fluorescence was detected at the membrane and in the

cytoplasm. The quantity and intensity of tumor cell uptake

increased with increasing concentration of Cy3-ADH-1 and

reached the highest peak at 50 mM, and then remained constant

with the increase of concentration. In contrast, the blank control

tube showed no orange fluorescence. Simultaneous inhibition

assays showed that SW480 cells were significantly blocked by

excess unlabeled ADH-1. The inhibitory effect of 200 nM was

better than that of 50 nM excess unlabeled ADH-1. This is in

accordance with the receptor-ligand competition binding law.

However, the pancreatic cancer BxPC3 cells showed no significant

increase in fluorescence uptake in tumor tissues at different
FIGURE 7

In vivo micro-PET/CT imaging of the subcutaneous SW480 xenograft model suggested that the radioactive uptake of the tumor tissue in the
unblocked group (A–D) was significantly decreased in the blocked group (E–H). Immunohistochemical staining showed a high expression of N-
calcium adhesion (I,×200); T/NT ratios in the unblocked group and blocked group (J).
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concentration intervals from 5 mM to 200 mM, presumably due to

the low N-cadherin expression in pancreatic cancer BxPC3 cells,

which was confirmed by in vivo N-cadherin immunohistochemical

staining in nude mice.
18F was produced by cyclotron acceleration with a high yield (more

than 1000mci), and a half-life is 110 minutes. Compared with 68Ga, 18F

can meet the inspection needs of a large number of patients; it is the

ideal positron nuclide for labeling polypeptides (43). In this study, the

[18F]AlF labeling method was adopted (44, 45). In the incorporation

reaction of 18FAl and NOTA-ADH-1, the molar ratio of precursor to

AlCl3 is crucial. The labeling yield was the highest (55%) at an AlCl3
concentration of 26 nmol and 5.5 times precursor. However, excessive

AlCl3 results in decreased labeling yields as Al can form a stable

complex with NOTA, competing with 18FAl chelation, resulting in a

lower labeling rate. Compared with the C-18 column, the yield with the

HLB column was higher, and 18F ions with high polarity and polar

buffer solution could be removed. The radiochemical purity of the

obtained product was very high, requiring no further HPLC

purification to meet clinical needs. Furthermore, the labeled product

was stable in serum, and in vivo biodistribution experiments confirmed

that the bone uptake was not high, indicating no obvious in

vivo defluorination.

In order to study the targeting effect of the probe, mice bearing

tumors with different expressions of N-cadherin were selected for

the study. The biodistribution showed that the probe largely
Frontiers in Oncology 12
accumulated in the kidneys and livers and subsequently

attenuated over time, suggesting excretion mainly through the

renal urinary and hepatobiliary systems. The biodistribution

results of [18F]AlF-NOTA-ADH-1 in the mice bearing pancreatic

cancer PDX tumor showed that the probe accumulated more

prominently in the tumor, with the highest tumor/non-tumor

tissue ratio at 60 min, which was related to the high expression of

N-cadherin. The biodistribution in SW480 tumor-bearing nude

mice revealed mild uptake of the probe, with the peak tumor/muscle

ratio at 60 min, which gradually decreased with time. The mild

uptake was also correlated with the moderate staining of N-

cadherin expression in the immunohistochemical staining of

pathological tissues. In pancreatic cancer BxPC3 tumor-bearing

nude mice, the tumor/muscle ratio was lowest, which was consistent

with the low expression of N-cad in this tumor type. The

biodistribution in different tumors illustrates that the probe is

specifically associated with N-cadherin expression in tumor tissue.

In addition, in order to study whether there is competitive

inhibition in the tumor tissue, 20 mg/kg of unlabeled ADH-1

solution was coinjected as the block group in the PDX tumor,

and the radioactive uptake value of the tumor was significantly

lower than that of the non-blocking inhibition group, which was

3.75 ± 0.07% ID/g and 10.76 ± 2.16% ID/g 60 minutes after

injection, respectively (p=0.006). In the SW480 tumor, the

radioactive uptake value was also lower than in the non-blocking
FIGURE 8

In vivo, micro-PET/CT imaging of the subcutaneous BxPC3 xenotransplantation model showed no significant increase in radiation uptake in tumor
tissues (A–E). Immunohistochemical staining of N-cadherin in tumor tissue showed low ex-pression in tumor tissue (F, ×200); T/NT ratios (G).
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inhibition group. Blocking experiments in PDX and SW480 tumor

models indicated that [18F]AlF-NOTA-ADH-1 has good

targeting specificity.

Micro PET/CT imaging of the pancreatic cancer PDX model

showed good tumor uptake 60 minutes after injection, with the

tumor/muscle ratio reaching 8.70 ± 2.68. Moreover, PDX tumor-

blocking experiments showed that tumors could be blocked by a

nonradioactive ADH-1 small peptide and attenuated by imaging,

which concurred with the biodistribution experiments in the PDX

model. The nude mouse model of SW480 demonstrated mild tumor

uptake, and SW480 tumors could also be blocked by a nonradioactive

ADH-1 small peptide and attenuated by imaging. PET imaging of the

BxPC3 pancreatic cancer models showed minimal tumor uptake, and

immunohistochemical experiments showed strongly positive N-

calcium adhesion expression in PDX tumors, positive expression in

SW480 tumors, and low expression in BxPC3 tumors. The micro-

PET results showed that the probe [18F]AlF-NOTA-ADH-1 could

discern the expression of N-cadherin in tumors.
5 Conclusions

In the present study, the N-cadherin-targeted fluorescent and

NOTA-modified derivatives Cy3-ADH-1 and NOTA-ADH-1 were

successfully synthesized. The N-cadherin-targeted PET imaging

probe [18F]AlF-NOTA-ADH-1 was successfully radiosynthesized.

Fluorescence imaging showed that Cy3-ADH-1 could be absorbed

by SW480 cells, and its uptake was inhibited by excessive ADH-1,

whereas pancreatic cancer BxPC3 cells showed no significant

uptake of the fluorescent probe Cy3-ADH-1. In vivo

biodistribution studies and micro-PET/CT imaging studies of 18F-

AlF-NOTA-ADH-1 confirmed that the PET imaging probe could

distinguish between tumors with different expressions of N-

cadherin. Blocking experiments showed that tumors could be

blocked by a nonradioactive ADH-1 peptide in PDX and SW480

tumors, suggesting that [18F]AlF-NOTA-ADH-1 has the specificity

of N-cadher in and the probe had the potent ia l for

clinical transformation.
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