5 research outputs found

    Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation

    Full text link

    Metabotyping of 30 maize hybrids under early-sowing conditions reveals potential marker-metabolites for breeding

    Get PDF
    Introduction: In Northern Europe, maize early-sowing used to maximize yield may lead to moderate damages of seedlings due to chilling without visual phenotypes. Genetic studies and breeding for chilling tolerance remain necessary, and metabolic markers would be particularly useful in this context. Objectives: Using an untargeted metabolomic approach on a collection of maize hybrids, our aim was to identify metabolite signatures and/or metabolites associated with chilling responses at the vegetative stage, to search for metabolites differentiating groups of hybrids based on silage-earliness, and to search for marker-metabolites correlated with aerial biomass. Methods: Thirty genetically-diverse maize dent inbred-lines (Zea mays) crossed to a flint inbred-line were sown in a field to assess metabolite profiles upon cold treatment induced by a modification of sowing date, and characterized with climatic measurements and phenotyping. Results: NMR- and LC-MS-based metabolomic profiling revealed the biological variation of primary and specialized metabolites in young leaves of plants before flowering-stage. The effect of early-sowing on leaf composition was larger than that of genotype, and several metabolites were associated to sowing response. The metabolic distances between genotypes based on leaf compositional data were not related to the genotype admixture groups, and their variability was lower under early-sowing than normal-sowing. Several metabolites or metabolite-features were related to silage-earliness groups in the normal-sowing condition, some of which were confirmed the following year. Correlation networks involving metabolites and aerial biomass suggested marker-metabolites for breeding for chilling tolerance. Conclusion: After validation in other experiments and larger genotype panels, these marker-metabolites can contribute to breeding.MetaboHUBPHENOMEAMAIZINGAgence Nationale de la Recherch

    Is there a place and role for endocytic TCR signaling?

    No full text
    International audienceT-lymphocyte activation relies on the cognate recognition by the TCR of the MHC-associated peptide ligand (pMHC) presented at the surface of an antigen-presenting cell (APC). This leads to the dynamic formation of a cognate contact between the T lymphocyte and the APC: the immune synapse (IS). Engagement of the TCR by the pMHC in the synaptic zone induces a cascade of signaling events leading to phosphorylation and dephosphorylation of proteins and lipids, which ultimately shapes the response of T lymphocytes. Although the engagement of the T-cell receptor (TCR) takes place at the plasma membrane, the TCR/CD3 complexes and the signaling molecules involved in transduction of the TCR signal are also present in intracellular membrane pools. These pools, which are both endocytic and exocytic, have tentatively been characterized by several groups including ours. We will herein summarize what is known on the intracellular pools of TCR signaling components. We will discuss their origin and the mechanisms involved in their mobility at the IS. Finally, we will propose several hypotheses concerning the functional role(s) that these intracellular pools might play in T-cell activation. We will also discuss the tools that could be used to test these hypotheses

    Is there a place and role for endocytic TCR

    No full text
    corecore