182 research outputs found

    Let's Chat to Find the APIs: Connecting Human, LLM and Knowledge Graph through AI Chain

    Full text link
    API recommendation methods have evolved from literal and semantic keyword matching to query expansion and query clarification. The latest query clarification method is knowledge graph (KG)-based, but limitations include out-of-vocabulary (OOV) failures and rigid question templates. To address these limitations, we propose a novel knowledge-guided query clarification approach for API recommendation that leverages a large language model (LLM) guided by KG. We utilize the LLM as a neural knowledge base to overcome OOV failures, generating fluent and appropriate clarification questions and options. We also leverage the structured API knowledge and entity relationships stored in the KG to filter out noise, and transfer the optimal clarification path from KG to the LLM, increasing the efficiency of the clarification process. Our approach is designed as an AI chain that consists of five steps, each handled by a separate LLM call, to improve accuracy, efficiency, and fluency for query clarification in API recommendation. We verify the usefulness of each unit in our AI chain, which all received high scores close to a perfect 5. When compared to the baselines, our approach shows a significant improvement in MRR, with a maximum increase of 63.9% higher when the query statement is covered in KG and 37.2% when it is not. Ablation experiments reveal that the guidance of knowledge in the KG and the knowledge-guided pathfinding strategy are crucial for our approach's performance, resulting in a 19.0% and 22.2% increase in MAP, respectively. Our approach demonstrates a way to bridge the gap between KG and LLM, effectively compensating for the strengths and weaknesses of both.Comment: Accepted on ASE'202

    Concern localization using information retrieval: An empirical study on Linux kernel

    Get PDF
    10.1109/WCRE.2011.72Proceedings - Working Conference on Reverse Engineering, WCRE92-9

    Altered spontaneous brain activity during dobutamine challenge in healthy young adults: A resting-state functional magnetic resonance imaging study

    Get PDF
    IntroductionThere is a growing interest in exploring brain-heart interactions. However, few studies have investigated the brain-heart interactions in healthy populations, especially in healthy young adults. The aim of this study was to explore the association between cardiovascular and spontaneous brain activities during dobutamine infusion in healthy young adults.MethodsForty-eight right-handed healthy participants (43 males and 5 females, range: 22–34 years) underwent vital signs monitoring, cognitive function assessment and brain MRI scans. Cardiovascular function was evaluated using blood pressure and heart rate, while two resting-state functional magnetic resonance imaging (rs-fMRI) methods—regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF)—were used together to reflect the local neural activity of the brain. Logistic regression was used to model the association between brain and heart.ResultsResults showed that blood pressure and heart rate significantly increased after dobutamine infusion, and the performance in brain functional activity was the decrease in ReHo in the left gyrus rectus and in ALFF in the left frontal superior orbital. The results of logistic regression showed that the difference of diastolic blood pressure (DBP) had significant positive relationship with the degree of change of ReHo, while the difference of systolic blood pressure (SBP) had significant negative impact on the degree of change in ALFF.DiscussionThese findings suggest that the brain-heart interactions exist in healthy young adults under acute cardiovascular alterations, and more attention should be paid to blood pressure changes in young adults and assessment of frontal lobe function to provide them with more effective health protection management
    corecore