1,703 research outputs found

    An atomistic investigation of the effect of strain on frictional properties of suspended graphene

    Get PDF
    We performed molecular dynamics (MD) simulations of a diamond probe scanned on a suspended graphene to reveal the effect of strain on the fictional properties of suspended graphene. The graphene was subjected to some certain strain along the scanning direction. We compared the friction coefficient obtained from different normal loads and strain. The results show that the friction coefficient can be decreased about one order of magnitude with the increase of the strain. And that can be a result of the decreased asymmetry of the contact region which is caused by strain. The synthetic effect of potential energy and the fluctuation of contact region were found to be the main reason accounting for the fluctuation of the friction force. The strain can reduce the fluctuation of the contact region and improve the stability of friction

    N′-(Butan-2-yl­idene)furan-2-carbohydrazide

    Get PDF
    The title Schiff base compound, C9H12N2O2, was obtained from a condensation reaction of butan-2-one and furan-2-carbohydrazide. The furan ring and the hydrazide fragment are roughly planar, the largest deviation from the mean plane being 0.069 (2)Å, but the butanyl­idene group is twisted slightly with respect to this plane by a dihedral angle of 5.2 (3)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link pairs of inversion-related mol­ecules, forming dimers of R 2 2(8) graph-set motif

    Energy Spectrum Theory of Incommensurate Systems

    Full text link
    Due to the lack of the translational symmetry, calculating the energy spectrum of an incommensurate system has always been a theoretical challenge. Here, we propose a natural approach to generalize the energy band theory to the incommensurate systems without reliance on the commensurate approximation, thus providing a comprehensive energy spectrum theory of the incommensurate systems. Except for a truncation dependent weighting factor, the formulae of this theory are formally almost identical to that of the Bloch electrons, making it particularly suitable for complex incommensurate structures. To illustrate the application of this theory, we give three typical examples: one-dimensional bichromatic and trichromatic incommensurate potential model, as well as a moir\'{e} quasicrystal. Our theory establishes a fundamental framework for understanding the incommensurate systems.Comment: 7 pages, 3 figure

    Use of low-dose computed tomography to assess pulmonary tuberculosis among healthcare workers in a tuberculosis hospital

    Get PDF
    BACKGROUND: According to the World Health Organization, China is one of 22 countries with serious tuberculosis (TB) infections and one of the 27 countries with serious multidrug-resistant TB strains. Despite the decline of tuberculosis in the overall population, healthcare workers (HCWs) are still at a high risk of infection. Compared with high-income countries, the TB prevalence among HCWs is higher in low- and middle-income countries. Low-dose computed tomography (LDCT) is becoming more popular due to its superior sensitivity and lower radiation dose. However, there have been no reports about active pulmonary tuberculosis (PTB) among HCWs as assessed with LDCT. The purposes of this study were to examine PTB statuses in HCWs in hospitals specializing in TB treatment and explore the significance of the application of LDCT to these workers. METHODS: This study retrospectively analysed the physical examination data of healthcare workers in the Beijing Chest Hospital from September 2012 to December 2015. Low-dose lung CT examinations were performed in all cases. The comparisons between active and inactive PTB according to the CT findings were made using the Pearson chi-square test or the Fisher’s exact test. Comparisons between the incidences of active PTB in high-risk areas and non-high-risk areas were performed using the Pearson chi-square test. Analyses of active PTB were performed according to different ages, numbers of years on the job, and the risks of the working areas. Active PTB as diagnosed by the LDCT examinations alone was compared with the final comprehensive diagnoses, and the sensitivity and positive predictive value were calculated. RESULTS: A total of 1 012 participants were included in this study. During the 4-year period of medical examinations, active PTB was found in 19 cases, and inactive PTB was found in 109 cases. The prevalence of active PTB in the participants was 1.24%, 0.67%, 0.81%, and 0.53% for years 2012 to 2015. The corresponding incidences of active PTB among the tuberculosis hospital participants were 0.86%, 0.41%, 0.54%, and 0.26%. Most HCWs with active TB (78.9%, 15/19) worked in the high-risk areas of the hospital. There was a significant difference in the incidences of active PTB between the HCWs who worked in the high-risk and non-high-risk areas (odds ratio [OR], 14.415; 95% confidence interval (CI): 4.733 – 43.896). Comparisons of the CT signs between the active and inactive groups via chi-square tests revealed that the tree-in-bud, cavity, fibrous shadow, and calcification signs exhibited significant differences (P = 0.000, 0.021, 0.001, and 0.024, respectively). Tree-in-bud and cavity opacities suggest active pulmonary tuberculosis, whereas fibrous shadow and calcification opacities are the main features of inactive pulmonary tuberculosis. Comparison with the final comprehensive diagnoses revealed that the sensitivity and positive predictive value of the diagnoses of active PTB based on LDCT alone were 100% and 86.4%, respectively. CONCLUSIONS: Healthcare workers in tuberculosis hospitals are a high-risk group for active PTB. Yearly LDCT examinations of such high-risk groups are feasible and necessary. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40249-017-0274-6) contains supplementary material, which is available to authorized users

    Evolution of surface grain structure and mechanical properties in orthogonal cutting of titanium alloy

    Get PDF
    In this study, a mesoscale dislocation simulation method was developed to study the orthogonal cutting of Titanium alloy. The evolution of surface grain structure and its effects on the surface mechanical properties were studied by using two-dimensional climb assisted dislocation dynamics technology. The motions of edge dislocations such as dislocation nucleation, junction, interaction with obstacles and grain boundaries, and annihilation were tracked. The results indicated that the machined surface has a microstructure composed of refined grains. The fine-grains bring appreciable scale effect and a mass of dislocations are piled up in the grain boundaries and persistent slip bands. In particular, dislocation climb can induce a perfect softening effect, but this effect is significantly weakened when grain size is less than 1.65 μm. In addition, a Hall-Petch type relation was predicted according to the arrangement of grain, the range of grain sizes and the distribution of dislocations

    Methyl 2-meth­oxy-4-{[2-(4-nitro­phen­yl)hydrazinyl­idene]meth­yl}benzoate

    Get PDF
    The mol­ecule of the title Schiff base compound, C16H15N3O5, obtained from a condensation reaction of 4-acet­oxy-3-meth­oxy­benzaldehyde and 4-nitro­phenyl­hydrazine, adopts an E geometry with respect to the C=N double bond. The mol­ecule is roughly planar, with the two benzene rings twisted slightly with respect to each other by a dihedral angle of 6.90 (9)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link centrosymmetrically related pairs of mol­ecules, forming dimers of R 2 2(22) graph-set motif. The dimers are further connected through slipped π–π inter­actions between symmetry-related benzene rings [centroid–centroid distance of 3.646 (1) Å, offset angle of 15.4°]

    Extended Wide-Bandwidth Rogowski Current Sensor with PCB Coil and Electronic Characteristic Shaper

    Get PDF

    Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration

    Full text link
    Optical complex materials offer unprecedented opportunity to engineer fundamental band dispersion which enables novel optoelectronic functionality and devices. Exploration of photonic Dirac cone at the center of momentum space has inspired an exceptional characteristic of zero-index, which is similar to zero effective mass in fermionic Dirac systems. Such all-dielectric zero-index photonic crystals provide an in-plane mechanism such that the energy of the propagating waves can be well confined along the chip direction. A straightforward example is to achieve the anomalous focusing effect without longitudinal spherical aberration, when the size of zero-index lens is large enough. Here, we designed and fabricated a prototype of zero-refractive-index lens by comprising large-area silicon nanopillar array with plane-concave profile. Near-zero refractive index was quantitatively measured near 1.55 um through anomalous focusing effect, predictable by effective medium theory. The zero-index lens was also demonstrated to perform ultralow longitudinal spherical aberration. Such IC compatible device provides a new route to integrate all-silicon zero-index materials into optical communication, sensing, and modulation, and to study fundamental physics on the emergent fields of topological photonics and valley photonics.Comment: 14 pages, 4 figure

    The Viscoelasticity Model of Corn Straw under the Different Moisture Contents

    Get PDF
    Viscoelastic model of corn straw, based on different moisture contents, is set up to characterise the deformation through three-point bending test. The model contains a linear elastic element, a damping element, and a nonlinear elastic element. The parameters of the model are determined according to the features of three-point bending test curve and characteristic of the model. The relationships between mechanical properties, energy absorption behavior of corn stalk, and moisture content have been, respectively, analysed. And regression analysis and curve fitting have been conducted based on various parameters and moisture contents with Matlab. These parameters provide the basis for straw crushing equipment design
    corecore