14 research outputs found

    Kernel Truncated Regression Representation for Robust Subspace Clustering

    Get PDF
    Subspace clustering aims to group data points into multiple clusters of which each corresponds to one subspace. Most existing subspace clustering approaches assume that input data lie on linear subspaces. In practice, however, this assumption usually does not hold. To achieve nonlinear subspace clustering, we propose a novel method, called kernel truncated regression representation. Our method consists of the following four steps: 1) projecting the input data into a hidden space, where each data point can be linearly represented by other data points; 2) calculating the linear representation coefficients of the data representations in the hidden space; 3) truncating the trivial coefficients to achieve robustness and block-diagonality; and 4) executing the graph cutting operation on the coefficient matrix by solving a graph Laplacian problem. Our method has the advantages of a closed-form solution and the capacity of clustering data points that lie on nonlinear subspaces. The first advantage makes our method efficient in handling large-scale datasets, and the second one enables the proposed method to conquer the nonlinear subspace clustering challenge. Extensive experiments on six benchmarks demonstrate the effectiveness and the efficiency of the proposed method in comparison with current state-of-the-art approaches.Comment: 14 page

    Underdetermined blind separation by combining sparsity and independence of sources

    Full text link
    In this paper, we address underdetermined blind separation of N sources from their M instantaneous mixtures, where N>M , by combining the sparsity and independence of sources. First, we propose an effective scheme to search some sample segments with the local sparsity, which means that in these sample segments, only Q(Q < M) sources are active. By grouping these sample segments into different sets such that each set has the same Q active sources, the original underdetermined BSS problem can be transformed into a series of locally overdetermined BSS problems. Thus, the blind channel identification task can be achieved by solving these overdetermined problems in each set by exploiting the independence of sources. In the second stage, we will achieve source recovery by exploiting a mild sparsity constraint, which is proven to be a sufficient and necessary condition to guarantee recovery of source signals. Compared with some sparsity-based UBSS approaches, this paper relaxes the sparsity restriction about sources to some extent by assuming that different source signals are mutually independent. At the same time, the proposed UBSS approach does not impose any richness constraint on sources. Theoretical analysis and simulation results illustrate the effectiveness of our approach

    Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

    Full text link
    Overparametrized Deep Neural Networks (DNNs) often achieve astounding performances, but may potentially result in severe generalization error. Recently, the relation between the sharpness of the loss landscape and the generalization error has been established by Foret et al. (2020), in which the Sharpness Aware Minimizer (SAM) was proposed to mitigate the degradation of the generalization. Unfortunately, SAM s computational cost is roughly double that of base optimizers, such as Stochastic Gradient Descent (SGD). This paper thus proposes Efficient Sharpness Aware Minimizer (ESAM), which boosts SAM s efficiency at no cost to its generalization performance. ESAM includes two novel and efficient training strategies-StochasticWeight Perturbation and Sharpness-Sensitive Data Selection. In the former, the sharpness measure is approximated by perturbing a stochastically chosen set of weights in each iteration; in the latter, the SAM loss is optimized using only a judiciously selected subset of data that is sensitive to the sharpness. We provide theoretical explanations as to why these strategies perform well. We also show, via extensive experiments on the CIFAR and ImageNet datasets, that ESAM enhances the efficiency over SAM from requiring 100% extra computations to 40% vis-a-vis base optimizers, while test accuracies are preserved or even improved

    How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]

    No full text
    corecore