53 research outputs found

    Recursion Operators of Some Equations of Hydrodynamic Type

    Get PDF
    We give a general method for constructing recursion operators for some equations of hydrodynamic type, admitting a nonstandard Lax representation. We give several examples for N=2 and N=3 containing the equations of shallow water waves and its generalizations with their first two higher symmetries and their recursion operators. We also discuss a reduction of N+1N+1 systems to NN systems of some new equations of hydrodynamic type.Comment: Latex File (amssymb), 22 page

    U(1)-invariant membranes: the geometric formulation, Abel and pendulum differential equations

    Full text link
    The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent then the dynamics is described by the pendulum equation.Comment: 19 pages, v3 published versio

    Hamiltonian of Tensionless Strings with Tensor Central Charge Coordinates

    Full text link
    A new class of twistor-like string models in four-dimensional space-time extended by the addition of six tensorial central charge (TCC) coordinates zmnz_{mn} is studied. The Hamiltonian of tensionless string in the extended space-time is derived and its symmetries are investigated. We establish that the string constraints reduce the number of independent TCC coordinates zmnz_{mn} to one real effective coordinate which composes an effective 5-dimensional target space together with the xmx^{m} coordinates. We construct the P.B. algebra of the first class constraints and discover that it coincides with the P.B. algebra of tensionless strings. The Lorentz covariant antisymmetric Dirac C^\hat{\mathbf C}-matrix of the P.B. of the second class constraints is constructed and its algebraic structure is further presented.Comment: 18 pages, Latex, no figure

    Tensionless String in the Notoph Background

    Full text link
    We study the interaction between a tensionless (null) string and an antisymmetric background field B_{ab} using a 2-component spinor formalism. A geometric condition for the absence of such an interaction is formulated. We show that only one gauge-invariant degree of freedom of the field B_{ab} does not satisfy this condition. Identification of this degree of freedom with the notoph field \phi of Ogievetskii-Polubarinov-Kalb-Ramond is suggested. Application of a two-component spinor formalism allows us a reduction of the complete system of non-linear partial differential equations and constraints governing the interacting null string dynamics to a system of linear differential equations for the basis spinors of the spin-frame. We find that total effect of the interaction is contained in a single derivation coefficient which is identified with the notoph field.Comment: 15 pages, no figures, RevTeX 3.

    Tensionless strings: physical Fock space and higher spin fields

    Full text link
    I study the physical Fock space of the tensionless string theory with perimeter action, exploring its new gauge symmetry algebra. The cancellation of conformal anomaly requires the space-time to be 13-dimensional. All particles are massless and there are no tachyon states in the spectrum. The zero mode conformal operator defines the levels of the physical Fock space. All levels can be classified by the highest Casimir operator W of the little group E(11) for massless particles in 11-dimensions. The ground state is infinitely degenerated and contains massless gauge fields of arbitrary large integer spin, realizing the irreducible representations of E(11) of fixed helicity. The excitation levels realize CSR representations of little group E(11) with an infinite number of helicities. After inspection of the first excitation level, which, as I prove, is a physical null state, I conjecture that all excitation levels are physical null states. In this theory the tensor field of the second rank does not play any distinctive role and therefore one can suggest that in this model there is no gravity.Comment: 22 pages, Latex, references adde

    Integrable nonlinear equations on a circle

    Full text link
    The concept of integrable boundary value problems for soliton equations on R\mathbb{R} and R+\mathbb{R}_+ is extended to bounded regions enclosed by smooth curves. Classes of integrable boundary conditions on a circle for the Toda lattice and its reductions are found.Comment: 23 page

    Hamiltonian structure and noncommutativity in pp-brane models with exotic supersymmetry

    Full text link
    The Hamiltonian of the simplest super pp-brane model preserving 3/4 of the D=4 N=1 supersymmetry in the centrally extended symplectic superspace is derived and its symmetries are described. The constraints of the model are covariantly separated into the first- and the second-class sets and the Dirac brackets (D.B.) are constructed. We show the D.B. noncommutativity of the super pp-brane coordinates and find the D.B. realization of the OSp(18)OSp(1|8) superalgebra. Established is the coincidence of the D.B. and Poisson bracket realizations of the OSp(18)OSp(1|8) superalgebra on the constraint surface and the absence there of anomaly terms in the commutation relations for the quantized generators of the superalgebra.Comment: Latex, 27 pages, no figures. Latex packages amsfonts and euscript are use

    Hydrodynamic type integrable equations on a segment and a half-line

    Get PDF
    The concept of integrable boundary conditions is applied to hydrodynamic type systems. Examples of such boundary conditions for dispersionless Toda systems are obtained. The close relation of integrable boundary conditions with integrable reductions of multi-field systems is observed. The problem of consistency of boundary conditions with the Hamiltonian formulation is discussed. Examples of Hamiltonian integrable hydrodynamic type systems on a segment and a semi-line are presented
    corecore