76 research outputs found

    Prehospital stroke scales as screening tools for early identification of stroke and transient ischemic attack

    Get PDF
    This is the final version. Available from Wiley via the DOI in this recordBACKGROUND: Rapid and accurate detection of stroke by paramedics or other emergency clinicians at the time of first contact is crucial for timely initiation of appropriate treatment. Several stroke recognition scales have been developed to support the initial triage. However, their accuracy remains uncertain and there is no agreement which of the scales perform better. OBJECTIVES: To systematically identify and review the evidence pertaining to the test accuracy of validated stroke recognition scales, as used in a prehospital or emergency room (ER) setting to screen people suspected of having stroke. SEARCH METHODS: We searched CENTRAL, MEDLINE (Ovid), Embase (Ovid) and the Science Citation Index to 30 January 2018. We handsearched the reference lists of all included studies and other relevant publications and contacted experts in the field to identify additional studies or unpublished data. SELECTION CRITERIA: We included studies evaluating the accuracy of stroke recognition scales used in a prehospital or ER setting to identify stroke and transient Ischemic attack (TIA) in people suspected of stroke. The scales had to be applied to actual people and the results compared to a final diagnosis of stroke or TIA. We excluded studies that applied scales to patient records; enrolled only screen-positive participants and without complete 2 × 2 data. DATA COLLECTION AND ANALYSIS: Two review authors independently conducted a two-stage screening of all publications identified by the searches, extracted data and assessed the methodologic quality of the included studies using a tailored version of QUADAS-2. A third review author acted as an arbiter. We recalculated study-level sensitivity and specificity with 95% confidence intervals (CI), and presented them in forest plots and in the receiver operating characteristics (ROC) space. When a sufficient number of studies reported the accuracy of the test in the same setting (prehospital or ER) and the level of heterogeneity was relatively low, we pooled the results using the bivariate random-effects model. We plotted the results in the summary ROC (SROC) space presenting an estimate point (mean sensitivity and specificity) with 95% CI and prediction regions. Because of the small number of studies, we did not conduct meta-regression to investigate between-study heterogeneity and the relative accuracy of the scales. Instead, we summarized the results in tables and diagrams, and presented our findings narratively. MAIN RESULTS: We selected 23 studies for inclusion (22 journal articles and one conference abstract). We evaluated the following scales: Cincinnati Prehospital Stroke Scale (CPSS; 11 studies), Recognition of Stroke in the Emergency Room (ROSIER; eight studies), Face Arm Speech Time (FAST; five studies), Los Angeles Prehospital Stroke Scale (LAPSS; five studies), Melbourne Ambulance Stroke Scale (MASS; three studies), Ontario Prehospital Stroke Screening Tool (OPSST; one study), Medic Prehospital Assessment for Code Stroke (MedPACS; one study) and PreHospital Ambulance Stroke Test (PreHAST; one study). Nine studies compared the accuracy of two or more scales. We considered 12 studies at high risk of bias and one with applicability concerns in the patient selection domain; 14 at unclear risk of bias and one with applicability concerns in the reference standard domain; and the risk of bias in the flow and timing domain was high in one study and unclear in another 16.We pooled the results from five studies evaluating ROSIER in the ER and five studies evaluating LAPSS in a prehospital setting. The studies included in the meta-analysis of ROSIER were of relatively good methodologic quality and produced a summary sensitivity of 0.88 (95% CI 0.84 to 0.91), with the prediction interval ranging from approximately 0.75 to 0.95. This means that the test will miss on average 12% of people with stroke/TIA which, depending on the circumstances, could range from 5% to 25%. We could not obtain a reliable summary estimate of specificity due to extreme heterogeneity in study-level results. The summary sensitivity of LAPSS was 0.83 (95% CI 0.75 to 0.89) and summary specificity 0.93 (95% CI 0.88 to 0.96). However, we were uncertain in the validity of these results as four of the studies were at high and one at uncertain risk of bias. We did not report summary estimates for the rest of the scales, as the number of studies per test per setting was small, the risk of bias was high or uncertain, the results were highly heterogenous, or a combination of these.Studies comparing two or more scales in the same participants reported that ROSIER and FAST had similar accuracy when used in the ER. In the field, CPSS was more sensitive than MedPACS and LAPSS, but had similar sensitivity to that of MASS; and MASS was more sensitive than LAPSS. In contrast, MASS, ROSIER and MedPACS were more specific than CPSS; and the difference in the specificities of MASS and LAPSS was not statistically significant. AUTHORS' CONCLUSIONS: In the field, CPSS had consistently the highest sensitivity and, therefore, should be preferred to other scales. Further evidence is needed to determine its absolute accuracy and whether alternatives scales, such as MASS and ROSIER, which might have comparable sensitivity but higher specificity, should be used instead, to achieve better overall accuracy. In the ER, ROSIER should be the test of choice, as it was evaluated in more studies than FAST and showed consistently high sensitivity. In a cohort of 100 people of whom 62 have stroke/TIA, the test will miss on average seven people with stroke/TIA (ranging from three to 16). We were unable to obtain an estimate of its summary specificity. Because of the small number of studies per test per setting, high risk of bias, substantial differences in study characteristics and large between-study heterogeneity, these findings should be treated as provisional hypotheses that need further verification in better-designed studies.National Institute for Health Research (NIHR

    Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma‑induced coagulopathy in adult trauma patients with bleeding

    Get PDF
    This review is published as a Cochrane Review in the Cochrane Database of Systematic Reviews 2015, Issue 2. Cochrane Reviews are regularly updated as new evidence emerges and in response to comments and criticisms, and the Cochrane Database of Systematic Reviews should be consulted for the most recent version of the Review.Trauma-induced coagulopathy (TIC) is a disorder of the blood clotting process that occurs soon after trauma injury. A diagnosis of TIC on admission is associated with increased mortality rates, increased burdens of transfusion, greater risks of complications and longer stays in critical care. Current diagnostic testing follows local hospital processes and normally involves conventional coagulation tests including prothrombin time ratio/international normalized ratio (PTr/INR), activated partial prothrombin time and full blood count. In some centres, thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are standard tests, but in the UK they are more commonly used in research settings

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    Осмотический демиелинизирующий синдром

    Get PDF
    ABSTRACT. This article discusses the clinical cases of rare and difficult to diagnose brain damage — osmotic demyelinating syndrome (ODS). ODS is a lifethreatening condition, manifested by acute demyelination of the headbrain on the background of water-electrolyte disturbances,usually associated with fast management of hyponatremia. Within the framework of ODS, central pontine myelinolysis (CPM) and extra-pontine myelinolysis (EPM) are observed, which are accompanied by acute demyelination in the pons and white matter of the cerebral hemispheres, respectively. In 60%, CPM combine with EPM. The main reason for the development of ODS is a violation of water-electrolyte metabolism associated with alcohol abuse, chronic hepatic and/or renal failure, diabetes mellitus, Sheehan syndrome, polydipsia, condition after the removal of pituitary adenoma, bulimia, immunodeficiency syndrome. Today, the diagnosis of ODS is based on magnetic resonance imaging of the brain. The article indicates the main causes of the disease, clinical features, methods of diagnosis and treatment, as well as the outcomes of the disease.РЕЗЮМЕ. Данная статья посвящена обсуждению клинических случаев редкого и трудно диагностируемого поражения головного мозга — осмотического демиелинизирующего синдрома (ОДС). ОДС — жизнеугрожающее состояние, проявляющееся остро возникающей демиелинизацией головного мозга на фоне водно-электролитных нарушений, как правило, связанных с быстрой коррекцией гипонатриемии. В рамках ОДС выделяют центральный понтинный миелинолиз (ЦПМ) и экстрапонтинный миелинолиз (ЭПМ), которые сопровождаются острой демиелинизацией в области моста и белого вещества больших полушарий головного мозга соответственно. В 60% ОДС сочетает в себе ЦПМ и ЭПМ. Основная причина развития ОДС — нарушения водно-электролитного обмена, возникающие на фоне злоупотребления алкоголем, хронической печеночной и/или почечной недостаточности, сахарного диабета, синдрома Шихана, полидипсии, состояния после удаления аденомы гипофиза, булимии, синдрома иммунодефицита. В настоящее время диагнос- тика ОДС основана на данных магнитно-резонансной томографии головного мозга. В статье ука- заны основные причины заболевания, клинические особенности, методы диагностики и лечения, а также исходы заболевания

    Disentangling the sources of ionizing radiation in superconducting qubits

    Get PDF
    Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and γ-rays emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits. We present a GEANT-4 based simulation to predict the rate of impacts and the amount of energy released in a qubit chip from each of the mentioned sources. We finally propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment

    Disentangling the sources of ionizing radiation in superconducting qubits

    Full text link
    Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and gamma's emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits. We develop a GEANT-4 based simulation to predict the rate of impacts and the amount of energy released in a qubit chip from each of the mentioned sources. We finally propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment

    Characterization of CdSe nanocrystals coated with amphiphiles. A capillary electrophoresis study

    Get PDF
    We have synthesized CdSe nanocrystals (NCs) possessing a trioctylphosphine surface passivation layer and modified with amphiphilic molecules to form a surface bilayer. The NCs covered with single amphiphiles are not stable in aqueous solution, but a mixed amphiphilic system is shown to provide stability in solution over several months. The solutions of the modified NCs were characterized by UV-Vis absorbance, photoluminescence, and transmission electron microscopy. An electrophoretic study revealed two operational modes. The first relies on the enrichment of NCs using a micellar plug as a tool. The accumulation of NCs at the plug-electrolyte buffer interface results in a sharp peak. By controlling the electrophoretic conditions, nanocrystals were forced to exit a micellar plug into an electrolyte buffer. We conclude that a system consisting of modified nanocrystals and a micellar plug can act as a mixed pseudomicellar system, where modified nanocrystals play the role of pseudomicelles

    Capillary electrophoretic separation of nanoparticles

    Get PDF
    In the present work, CdSe nanocrystals (NCs) synthesized with a trioctylphosphine surface passivation layer were modified using amphiphilic molecules to form a surface bilayer capable of providing stable NCs aqueous solutions. Such modified nanocrystals were used as a test solute in order to analyze new electrophoretic phenomena, by applying a micellar plug as a separation tool for discriminating nanocrystals between micellar and micelle-free zones during electrophoresis. The distribution of NCs between both zones depended on the affinity of nanocrystals towards the micellar zone, and this relies on the kind of surface ligands attached to the NCs, as well as electrophoretic conditions applied. In this case, the NCs that migrated within a micellar zone can be focused using a preconcentration mechanism. By modifying electrophoretic conditions, NCs were forced to migrate outside the micellar zone in the form of a typical CZE peak. In this situation, a two-order difference in separation efficiencies, in terms of theoretical plates, was observed between focused NCs (N ~ 107) and a typical CZE peak for NCs (N ~ 105). By applying the amino-functionalized NCs the preconcentration of NCs, using a micellar plug, was examined, with the conclusion that preconcentration efficiency, in terms of the enhancement factor for peak height (SEFheight) can be, at least 20. The distribution effect was applied to separate CdSe/ZnS NCs encapsulated in silica, as well as surface-modified with DNA, which allows the estimation of the yield of conjugation of biologically active molecules to a particle surface
    corecore