1,198 research outputs found

    Formation of singularities on the surface of a liquid metal in a strong electric field

    Full text link
    The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external electric field is studied. It is establish that the equations of motion for such a liquid can be solved in the approximation in which the surface deviates from a plane by small angles. This makes it possible to show that on an initially smooth surface for almost any initial conditions points with an infinite curvature corresponding to branch points of the root type can form in a finite time.Comment: 14 page

    First direct measurement of optical phonons in 2D plasma crystals

    Full text link
    Spectra of phonons with out-of-plane polarization were studied experimentally in a 2D plasma crystal. The dispersion relation was directly measured for the first time using a novel method of particle imaging. The out-of-plane mode was proven to have negative optical dispersion, comparison with theory showed good agreement. The effect of the plasma wakes on the dispersion relation is briefly discussed.Comment: submitted to Physical Review Letter

    Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view

    Full text link
    Experiments with two-dimensional (2D) plasma crystals are usually carried out in rf plasma sheaths, where the interparticle interactions are modified due to the presence of plasma wakes. The wake-mediated interactions result in the coupling between wave modes in 2D crystals, which can trigger the mode-coupling instability and cause melting. The theory predicts a number of distinct fingerprints to be observed upon the instability onset, such as the emergence of a new hybrid mode, a critical angular dependence, a mixed polarization, and distinct thresholds. In this paper we summarize these key features and provide their detailed discussion, analyze the critical dependence on experimental parameters, and highlight the outstanding issues

    On separable Fokker-Planck equations with a constant diagonal diffusion matrix

    Full text link
    We classify (1+3)-dimensional Fokker-Planck equations with a constant diagonal diffusion matrix that are solvable by the method of separation of variables. As a result, we get possible forms of the drift coefficients B1(x⃗),B2(x⃗),B3(x⃗)B_1(\vec x),B_2(\vec x),B_3(\vec x) providing separability of the corresponding Fokker-Planck equations and carry out variable separation in the latter. It is established, in particular, that the necessary condition for the Fokker-Planck equation to be separable is that the drift coefficients B⃗(x⃗)\vec B(\vec x) must be linear. We also find the necessary condition for R-separability of the Fokker-Planck equation. Furthermore, exact solutions of the Fokker-Planck equation with separated variables are constructedComment: 20 pages, LaTe

    Direct observation of mode-coupling instability in two-dimensional plasma crystals

    Full text link
    Dedicated experiments on melting of 2D plasma crystals were carried out. The melting was always accompanied by spontaneous growth of the particle kinetic energy, suggesting a universal plasma-driven mechanism underlying the process. By measuring three principal dust-lattice (DL) wave modes simultaneously, it is unambiguously demonstrated that the melting occurs due to the resonance coupling between two of the DL modes. The variation of the wave modes with the experimental conditions, including the emergence of the resonant (hybrid) branch, reveals exceptionally good agreement with the theory of mode-coupling instability.Comment: 4 pages, submitted to Physical Review Letter

    Nonlinear regime of the mode-coupling instability in 2D plasma crystals

    Full text link
    The transition between linear and nonlinear regimes of the mode-coupling instability (MCI) operating in a monolayer plasma crystal is studied. The mode coupling is triggered at the centre of the crystal and a melting front is formed, which travels through the crystal. At the nonlinear stage, the mode coupling results in synchronisation of the particle motion and the kinetic temperature of the particles grows exponentially. After melting of the crystalline structure, the mean kinetic energy of the particles continued to grow further, preventing recrystallisation of the melted phase. The effect could not be reproduced in simulations employing a simple point-like wake model. This shows that at the nonlinear stage of the MCI a heating mechanism is working which was not considered so far.Comment: 6 pages, 4 figure

    Group classification of heat conductivity equations with a nonlinear source

    Full text link
    We suggest a systematic procedure for classifying partial differential equations invariant with respect to low dimensional Lie algebras. This procedure is a proper synthesis of the infinitesimal Lie's method, technique of equivalence transformations and theory of classification of abstract low dimensional Lie algebras. As an application, we consider the problem of classifying heat conductivity equations in one variable with nonlinear convection and source terms. We have derived a complete classification of nonlinear equations of this type admitting nontrivial symmetry. It is shown that there are three, seven, twenty eight and twelve inequivalent classes of partial differential equations of the considered type that are invariant under the one-, two-, three- and four-dimensional Lie algebras, correspondingly. Furthermore, we prove that any partial differential equation belonging to the class under study and admitting symmetry group of the dimension higher than four is locally equivalent to a linear equation. This classification is compared to existing group classifications of nonlinear heat conductivity equations and one of the conclusions is that all of them can be obtained within the framework of our approach. Furthermore, a number of new invariant equations are constructed which have rich symmetry properties and, therefore, may be used for mathematical modeling of, say, nonlinear heat transfer processes.Comment: LaTeX, 51 page

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+∣ψ∣γψ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, γ\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page
    • …
    corecore