41 research outputs found

    FpSynt: a fixed-point datapath synthesis tool for embedded systems

    Full text link
    Digital mobile systems must function with low power, small size and weight, and low cost. High-performance desktop microprocessors, with built-in floating point hardware, are not suitable in these cases. For embedded systems, it can be advantageous to implement these calculations with fixed point arithmetic instead. We present an automated fixed-point data path synthesis tool FpSynt for designing embedded applications in fixed-point domain with sufficient accuracy for most applications. FpSynt is available under the GNU General Public License from the following GitHub repository: http://github.com/izhbannikov/FPSYN

    Allocating the chains of consecutive additions for optimal fixed-point data path synthesis

    Full text link
    Minimization of computational errors in the fixed-point data path is often difficult task. Many signal processing algorithms use chains of consecutive additions. The analyzing technique that can be applied to fixed-point data path synthesis has been proposed. This technique takes advantage of allocating the chains of consecutive additions in order to predict growing width of the data path and minimize the design complexity and computational errors

    ΠšΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΡ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ гипСртоничСским раствором Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° натрия ΠΏΡ€ΠΈ критичСских состояниях

    Get PDF
    Objective: to assess the capabilities of small-volume hypertonic infusion in the context of early goal-directed therapy for critical conditions in surgical patients.Subjects and methods. Twenty-nine patients (SAPS II 47.5Β±6.81 scores) operated on for generalized peritonitis (n=24) or severe concomitant injury with damages to chest and/or abdominal organs (n=5) who had the clinical and laboratory signs of a systemic inflammatory reaction were intravenously injected 4 ml/kg of 7.5% of hypertonic sodium chloride solution (HS) and colloidal solution, followed by infusion and, if indicated, inotropic maintenance of hemodynamics for 6 hours in order to achieve the goal vales of mean blood pressure (BP), central venous pressure (CVP), central venous blood oxygen saturation (ScvO2), and diuresis. Plasma concentrations of sodium, chlorine, and lactate, acid-base balance, and osmotic blood pressure were monitored.Results. The patients were found to have infusion therapy-refractory critical arterial hypotension, low ScvO2, and oliguria before small-volume circulation maintenance. In all the patients, HS infusion originally caused a rapid rise in BP up to the goal value, with its further colloid infusion maintenance requiring additional dopamine infusion in 12 patients and red blood cell transfusion in 3. This could stabilize over 6 hours BP at the required level in 25 patients, in 9 of whom CVP only approximated the goal value. All the patients were found to have a significant increase in ScvO2 up to an average of 68% in response to HP infusion after 30β€”60 minutes; in 14 out of them ScvO2 exceeded 70%. By hour 6, ScvO2 stabilized at its goal level in 23 (79%) examinees. Administration of HS caused a significantly increased diuresis. In patients with recovered renal function, the observed hypernatremia, hyperchloremia with hyperchloremic acidosis were transient.Conclusion. The results of the study show it possible to include small-volume hypertonic infusion at the starting stage of early goal-directed therapy, the net result of which will be determined by the recovery of water-electrolyte homeostasis. ЦСль исслСдования β€” ΠΎΡ†Π΅Π½ΠΊΠ° возмоТностСй малообъСмной гипСртоничСской ΠΈΠ½Ρ„ΡƒΠ·ΠΈΠΈ с ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ Ρ€Π°Π½Π½Π΅ΠΉ Ρ†Π΅Π»Π΅Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ критичСских состояний хирургичСских Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ….ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. 29-ΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ (SAPS II 47,5Β±6,81 Π±Π°Π»Π»ΠΎΠ²), ΠΏΡ€ΠΎΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‚ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚Π° (24), тяТСлой сочСтанной Ρ‚Ρ€Π°Π²ΠΌΡ‹ с ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡ€Π³Π°Π½ΠΎΠ² Π³Ρ€ΡƒΠ΄ΠΈ ΠΈ/ΠΈΠ»ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π° (5), ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΌ клиничСскиС ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ систСмной Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ, для достиТСния Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ срСднСго Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ давлСния (АД), Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠ³ΠΎ давлСния (Π¦Π’Π”), насыщСния кислородом ΠΊΡ€ΠΎΠ²ΠΈ Π² Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π½Π΅ (ScvO2) ΠΈ Π΄ΠΈΡƒΡ€Π΅Π·Π°, Π²Π½ΡƒΡ‚Ρ€ΠΈΠ²Π΅Π½Π½ΠΎ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ 4 ΠΌΠ»/ΠΊΠ³ 7,5% раствора Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° натрия (Π“Π ) ΠΈ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ раствора с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ ΠΈΠ½Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ, ΠΏΠΎ показаниям, ΠΈΠ½ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π½Π° протяТСнии 6 часов. ΠœΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ плазмСнная концСнтрация натрия, Ρ…Π»ΠΎΡ€Π°, Π»Π°ΠΊΡ‚Π°Ρ‚Π°, кислотно-основноС состояниС ΠΈ осмотичСскоС Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΎΠ²ΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π”ΠΎ малообъСмной ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ кровообращСния Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈΡΡŒ критичСская Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ гипотСнзия, рСфрактСрная ΠΊ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΠΉ ΠΈΠ½Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, низкая ScvO2, олигурия. Π˜Π½Ρ„ΡƒΠ·ΠΈΡ Π“Π  ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° Ρƒ всСх Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊ быстрому ΠΏΠΎΠ΄ΡŠΠ΅ΠΌΡƒ АД Π΄ΠΎ Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ значСния с Π΅Π³ΠΎ дальнСйшСй ΠΈΠ½Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π°ΠΌΠΈ, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρƒ 12 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΈΡΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ инфузия Π΄ΠΎΠΏΠΌΠΈΠ½Π°, ΠΈ Ρƒ 3 β€” трансфузия эритроцитов. Π­Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π·Π° 6 часов ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ АД Ρƒ 25 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, Ρƒ 9 ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π¦Π’Π” Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΠ»ΠΈΡΡŒ ΠΊ Ρ†Π΅Π»Π΅Π²ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ. Π’ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° ΠΈΠ½Ρ„ΡƒΠ·ΠΈΡŽ Π“Π  Ρƒ всСх Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‡Π΅Ρ€Π΅Π· 30β€”60 ΠΌΠΈΠ½ΡƒΡ‚ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ достовСрноС ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ScvO2 Π² срСднСм Π΄ΠΎ 68%, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Ρƒ 14 ΠΈΠ· Π½ΠΈΡ… ScvO2 прСвысила 70% . К 6 часам ScvO2 ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»Π°ΡΡŒ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ своСго Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ значСния Ρƒ 23 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, Ρ‚. Π΅. Ρƒ 79% исслСдованных. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π“Π  Π²Ρ‹Π·Ρ‹Π²Π°Π»ΠΎ ΠΊ этому Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π΄ΠΈΡƒΡ€Π΅Π·Π°. Π£ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с восстановлСнной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΏΠΎΡ‡Π΅ΠΊ наблюдавшиСся гипСрнатриСмия, гипСрхлорСмия с гипСрхлорСмичСским Π°Ρ†ΠΈΠ΄ΠΎΠ·ΠΎΠΌ ΠΈΠΌΠ΅Π»ΠΈ Ρ‚Ρ€Π°Π½Π·ΠΈΡ‚ΠΎΡ€Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ малообъСмной гипСртоничСской ΠΈΠ½Ρ„ΡƒΠ·ΠΈΠΈ Π² стартовый этап Ρ€Π°Π½Π½Π΅ΠΉ Ρ†Π΅Π»Π΅Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒΡΡ восстановлСниСм Π²ΠΎΠ΄Π½ΠΎ-элСктролитного гомСостаза ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°.

    Preprocessing Algorithms and Software for Genomic Studies with High-Throughput Sequencing Data

    No full text
    DNA sequencing technologies address problems, the solutions of which were not possible before, such as whole genome sequencing or microbial community characterization without pre-cultivation. Current High-Throughput Sequencing (HTS) techniques allow genomic studies in small labs as well as in large genomic centers. Together with modern computational software, HTS becomes a powerful tool, which allows researchers to answer important biological questions in novel ways. Despite the advantages of modern HTS technologies, large amounts of data and accompanying noise in HTS library confound bioinformatic analysis. Data preprocessing is needed in order to prepare data for subsequent analysis. Data preprocessing includes noise removal as well as techniques such as data reduction. In this dissertation I present a set of software tools that may be used in genomic studies in order to prepare HTS data for subsequent bioinformatic analysis. The first two chapters in this dissertation describe preprocessing tools developed for data denoising. In the last two chapters I explore the use of multiple genomic markers in 16S data analysis with a meta-amplicon analysis algorithm, which facilitates usage of all the information that can be obtained with 16S amplicon sequencing. Meta-amplicon analysis represents improvements on current methods used to characterize bacterial composition and community structure.Thesis (Ph.D., Bioinformatics & Computational Biology) -- University of Idaho, 201
    corecore