100 research outputs found

    Design of Pulse Forming Networks Triggered by High-Power Hydrogen Thyratron

    Get PDF
    Hydrogen thyratron is a switching device invented based on the phenomenon of gas discharge, and it is widely used in the field of high-power pulse technology. The design of Pulse Forming Network (PFN) triggered by hydrogen thyratron aims to control the switch of subsequent circuit, and shorten the gate-cathode voltage and conduction delay time by increasing the rise rate of the trigger voltage. However, in the currently adopted series resonance network design schemes, usually the value of inductance is very large, which can easily lead to the decline in the electromagnetic compatibility performance; moreover, the large distribution of network component parameters will greatly increase the fabrication difficulties. In view of the features of high-power hydrogen thyratron and the design requirements of PFN, this paper adopted the series resonance network design scheme to devise network series and parameters of the PFN and analyze the shortcomings of the series resonance network design scheme; then, it used the anti-resonance network to design a three-stage transform algorithm model, so as to achieve the purpose of reducing the inductance of the PFN and the difficulty of capacitance model selection in engineering practice. At last, simulation results verified the correctness and feasibility of the designed three-stage transform algorithm model, providing evidences for the pulse network projects of hydrogen thyratron and other high-power equipment in terms of implementation paths, methods, and algorithm models

    Aerobic exercise training at maximal fat oxidation intensity improves body composition, glycemic control, and physical capacity in older people with type 2 diabetes

    Get PDF
    Background: Aerobic training has been used as one of the common treatments for type 2 diabetes; however, further research on the individualized exercise program with the optimal intensity is still necessary. The purpose of this study was to investigate the effects of supervised exercise training at the maximal fat oxidation (FATmax) intensity on body composition, glycemic control, lipid profile, and physical capacity in older people with type 2 diabetes. Methods: Twenty-four women and 25 men with type 2 diabetes, aged 60–69 years. The exercise groups trained at the individualized FATmax intensity for 1 h/day for 3 days/week over 16 weeks. No dietary intervention was introduced during the experimental period. Whole body fat, abdominal fat, oral glucose tolerance test, lipid profile, and physical capacity were measured before and after the interventions. Results: FATmax intensity was at 41.3 ± 3.2% VO2max for women and 46.1 ± 10.3% VO2max for men. Exercise groups obtained significant improvements in body composition, with a special decrease in abdominal obesity; decreased resting blood glucose concentration and HbA1c; and increased VO2max, walking ability, and lower body strength, compared to the non-exercising controls. Daily energy intake and medication remained unchanged for all participants during the experimental period. Conclusion: Beside the improvements in the laboratory variables, the individualized FATmax training can also benefit daily physical capacity of older people with type 2 diabetes

    Variable remanence acquisition efficiency in sediments containing biogenic and detrital magnetites: Implications for relative paleointensity signal recording

    Get PDF
    Widespread geological preservation of biogenic magnetite makes it important to assess how such particles contribute to sedimentary paleomagnetic signals. We studied a sediment core from the South China Sea that passes the strict empirical criteria for magnetic "uniformity" used in relative paleointensity studies. Such assessments are based routinely on bulk magnetic parameters that often fail to enable identification of mixed magnetic mineral assemblages. Using techniques that enable component-specific magnetic mineral identification, we find that biogenic and detrital magnetites occur in approximately equal concentrations within the studied sediments. We analyzed normalized remanence signals associated with the two magnetite components to assess whether co-occurring biogenic and detrital magnetites record geomagnetic information in the same way and with the same efficiency. Paleomagnetic directions for the two components have no phase lag, which suggests that the biogenic and detrital magnetites acquired their magnetizations at equivalent times. However, we find that the biogenic magnetite is generally 2-4 times more efficient as the detrital magnetite in contributing to the natural remanent magnetization (NRM) despite their approximately equal magnetic contributions. Variations in the concentration and efficiency of remanence acquisition of the two components suggest that a significant part of the NRM is controlled by nongeomagnetic factors that will affect relative paleointensity recording. We recommend that methods suited to the detection of variable recording efficiency associated with biogenic and detrital magnetites should be used on a routine basis in relative paleointensity studies

    Boosting the Transferability of Adversarial Attacks with Global Momentum Initialization

    Full text link
    Deep neural networks are vulnerable to adversarial examples, which attach human invisible perturbations to benign inputs. Simultaneously, adversarial examples exhibit transferability under different models, which makes practical black-box attacks feasible. However, existing methods are still incapable of achieving desired transfer attack performance. In this work, from the perspective of gradient optimization and consistency, we analyze and discover the gradient elimination phenomenon as well as the local momentum optimum dilemma. To tackle these issues, we propose Global Momentum Initialization (GI) to suppress gradient elimination and help search for the global optimum. Specifically, we perform gradient pre-convergence before the attack and carry out a global search during the pre-convergence stage. Our method can be easily combined with almost all existing transfer methods, and we improve the success rate of transfer attacks significantly by an average of 6.4% under various advanced defense mechanisms compared to state-of-the-art methods. Eventually, we achieve an attack success rate of 95.4%, fully illustrating the insecurity of existing defense mechanisms

    LMP-based Pricing for Energy Storage in Local Market to Facilitate PV Penetration

    Get PDF

    Atlas of Mineral Deposits Distribution in China (2020)

    Get PDF
    This open access book includes instruction of national mineral database 2020 and atlas of national mineral deposits distribution derived from national mineral database 2020. National mineral database 2020 is based on data from National Geological Archives China(NGAC). Moreover, it introduces the construction method and updates maintenance mechanism of the mineral deposits database and proposes the concept of updating data based on collected archives. The construction guideline on national mineral deposits database provides guiding framework for the future development on geological database
    corecore