50 research outputs found
Expanding Greenland Ice Sheet Enhances Sensitivity of Plio-Pleistocene Climate to Obliquity Forcing in the Kiel Climate Model
Proxy data suggest the onset of Northern Hemisphere glaciation during the Plio-Pleistocene transition from 3.2 to 2.5 Ma resulted in enhanced climate variability at the obliquity (41 kyr) frequency. Here, we investigate the influence of the expanding Greenland ice sheet (GrIS) on the mean climate and obliquity-related variability in a series of climate model simulations. These suggest that an expanding GrIS weakens the Atlantic Meridional Overturning Circulation (AMOC) by ~1 Sv, mainly due to reduced heat loss in the Greenland-Iceland-Norwegian Sea. Moreover, the growing GrIS amplifies the Hadley circulation response to obliquity forcing driving variations in freshwater export from the tropical Atlantic and in turn variations of the AMOC. The stronger AMOC response to obliquity forcing, by about a factor of two, results in a stronger global-mean near-surface temperature response. We conclude that the AMOC response to obliquity forcing is important to understand the enhanced climate variability at the obliquity frequency during the Plio-Pleistocene transition
The Krüppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression
<p>Abstract</p> <p>Background</p> <p>Krüppel-like factor 9 (KLF9) is a transcriptional regulator of uterine endometrial cell proliferation, adhesion and differentiation; processes essential for pregnancy success and which are subverted during tumorigenesis. The network of endometrial genes controlled by KLF9 is largely unknown. Over-expression of KLF9 in the human endometrial cancer cell line HEC-1-A alters cell morphology, proliferative indices, and differentiation, when compared to KLF9 under-expressing HEC-1-A cells. This cell line provides a unique model for identifying KLF9 downstream gene targets and signaling pathways.</p> <p>Methods</p> <p>HEC-1-A sub-lines differing in relative levels of KLF9 were subjected to microarray analysis to identify differentially-regulated RNAs.</p> <p>Results</p> <p>KLF9 under-expression induced twenty four genes. The KLF9-suppressed mRNAs encode protein participants in: aldehyde metabolism (AKR7A2, ALDH1A1); regulation of the actin cytoskeleton and cell motility (e.g., ANK3, ITGB8); cellular detoxification (SULT1A1, ABCC4); cellular signaling (e.g., ACBD3, FZD5, RAB25, CALB1); and transcriptional regulation (PAX2, STAT1). Sixty mRNAs were more abundant in KLF9 over-expressing sub-lines. The KLF9-induced mRNAs encode proteins which participate in: regulation and function of the actin cytoskeleton (COTL1, FSCN1, FXYD5, MYO10); cell adhesion, extracellular matrix and basement membrane formation (e.g., AMIGO2, COL4A1, COL4A2, LAMC2, NID2); transport (CLIC4); cellular signaling (e.g., BCAR3, MAPKAPK3); transcriptional regulation [e.g., KLF4, NR3C1 (glucocorticoid receptor), RXRα], growth factor/cytokine actions (SLPI, BDNF); and membrane-associated proteins and receptors (e.g., CXCR4, PTCH1). In addition, the abundance of mRNAs that encode hypothetical proteins (KLF9-inhibited: C12orf29 and C1orf186; KLF9-induced: C10orf38 and C9orf167) were altered by KLF9 expression. Human endometrial tumors of high tumor grade had decreased KLF9 mRNA abundance.</p> <p>Conclusion</p> <p>KLF9 influences the expression of uterine epithelial genes through mechanisms likely involving its transcriptional activator and repressor functions and which may underlie altered tumor biology with aberrant KLF9 expression.</p
Numerical Investigation of a two-inlet PVT air collector
A numerical study of heat and mass transfer characteristics of a two-inlet PV/T air collector is performed. The influence of thermal characteristics and efficiency is investigated as the area ratios of inlet and outlet of the single channel with two inlets are changed. The design of the two-inlet PV/T air collector can avoid the poor heat transfer conditions of the single inlet PV/T air collector and improve the total photo-thermal efficiency. When the inlet/outlet cross-sectional area ratio is reduced, the inlet air from the second inlet enhances the convection heat transfer in the second duct and the temperature distribution is more uniform. As the cross-sectional area of the second inlet increase, the maximum heat exchange amount of the two-inlet PV/T air collector occurs between the inlet and outlet cross-sectional area ratio L=0.645 and L=0.562
Numerical simulation of PV/T air collector with gradually expanding and shrinking channels
CFD technology isused to simulate the PV/T air collector with gradually expanding and shrinking channels, and thegradually expanding and shrinking channels have influence on the temperature of the heat absorbing plate and the temperature outlet air of the PV/T air collector is analyzed.The resultshowsthat the expanding and shrinking channels have adverse effectson the massairflow in the collector,causing the temperature of the heat absorption plate to rise.Increasing the mcan effectively reduce the temperature of the heat absorption plate and enhancethe photoelectricefficiency of the system,and thetemperatureof air outlet will be enhanced.However, themassflowhas greater influence on the outlet temperature, and the increase of the mass flowmakes the outlet temperature decreasemore obvious. As the air mass flow increases, the temperature difference between m=0.0081and m=0.0169will increase. When the massflow is 0.0029kg/s, the temperature difference is 1.69℃; when the massflow is 0.0169, the temperature difference is 2.35℃
Maritime simulator based determination of minimum DCPA and TCPA in head-on ship-to-ship collision avoidance in confined waters
10.1080/23249935.2019.1567617Transportmetrica A: Transport Science15021124-114
Simultaneous determination of brazilin and protosappanin B in Caesalpinia sappan by ionic-liquid dispersive liquid-phase microextraction method combined with HPLC
Abstract The conditions of heating, ionic liquid-based ultrasonic-assisted extraction combined with reverse-phase high performance liquid chromatography were optimized to simultaneously isolate and determinate brazilin and protosappanin B in Caesalpinia sappan. Ionic liquids, including [BMIM]Br, [BMIM]BF4, [BMIM]PF6 and [HMIM]PF6, were selected as extraction solvents while methanol, acetone, acetonitrile, ethanol and water were selected as dispersants. The chromatographic column was Purospher star RP-C18 (250 mm × 4.6 mm, 5 μm), a mixture of methanol and 0.2% phosphoric acid–water was used as mobile phase at a flow rate 0.65 mL/min. The result displayed that the extraction yields of brazilin and protosappanin B were highest when the concentration of [BMIM]Br methanol solution as extraction solvent was 0.5 mol/L and the solid–liquid ratio was 1:50 (g/mL). Under the optimal extraction conditions, the contents of brazilin showed a good linearity (r = 1.0000) within the range of 1.25–7.50 μg with the average recovery of 99.33%, the contents of protosappanin B also showed a good linearity (r = 0.9999) within the range of 0.50–3.00 μg with the average recovery of 98.31%. This experiment, which adopted environmentally friendly reagent as extraction solvent, not only improved the extraction efficiency, but also avoided the environmental pollution caused by organic solvent. Moreover, it was simple and reliable, and can be of important significance in the study of Traditional Chinese Medicine active ingredient extraction methods. The antibacterial activities of the ionic liquids and methanol extracts were determined using the paper disc diffusion method. The ionic liquid extract was found to possess antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MIC value of 37.5 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 18.8 mg crude drug/mL), but not against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa. Compared with the ionic liquid extract, the methanol extract was found to have antibacterial activity against S. aureus and methicillin-resistant S. aureus (MIC value of 75.0 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 150.0 mg crude drug/mL). However, the same, the methanol extract did not have antibacterial activity against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa
Dynamic Changes of Secondary Metabolites and Antioxidant Activity of Ligustrum lucidum During Fruit Growth
There are a number of secondary metabolites having medicinal values in Ligustri Lucidi Fructus. In this study, the target analytes salidroside, ligustroflavone, specnuezhenide, oleuropein, oleanolic acid and ursolic acid were chosen, aiming to establish a method to investigate the content of six compounds during eight growth stages of Ligustri Lucidi Fructus. Even though the results indicated that the contents of six compounds in different growth periods reached their maximum value, they displayed a downward trend. The antioxidant activity of the analyzed samples also decreased along with the growth period. The relationship between the content of six secondary metabolites and the activity has been elucidated. Hence, this research provides a theoretical basis for guiding efficient use of Ligustri Lucidi Fructus
Investigation of an air-cooled double-channel photovoltaic/thermal system with integrated thermal energy storage
The performance of photovoltaic cells is severely limited by increasing internal temperatures within the solar cells. It is crucial to either remove or store the excess thermal energy from the solar cells to improve energy efficiency. To address this, a Phase Change Material (PCM) has been integrated into an air-cooled double-channel photovoltaic/thermal (PV/T) system. This model has been established to analyze the effects of the PCMs' thermophysical properties, the height ratio of upper/lower channels, the thickness of the PCMs layer, and the air mass flow rate on the thermal performance of the system. The numerical model has been validated with maximum errors of 5.90% and 4.40% for the PV panel and air outlet temperature, respectively. The results show that the height ratio of the upper and lower channels has a significant impact on the system's performance, with a height ratio of 0.25 achieving the highest performance of 66.2%. It is found that RT22HC shows the highest overall performance among the four paraffin waxes (melting range: 17–29 °C). Additionally, it is found that a 15 mm PCM layer achieves the optimum performance of 70.5%. Finally, the correlation between air mass flow rate and enhanced electrical and thermal efficiency are also discussed. The study provides valuable insights into optimizing the PV/T system's performance, contributing to advancements in solar energy utilization
Fission track ages and Mesozoic tectonic uplift in the Niushoushan-Luoshan area on the western edge of the Ordos Basin
The western margin of the Ordos Basin and its adjacent regions have undergone a complex tectonic evolution from the Mesozoic to the Cenozoic era. However, the question of tectonic uplift since the Cenozoic era remains a topic of contention, and the regional thermal evolution history necessitates precise chronological evidence. Situated close to the thrust belt within the western margin of the Ordos Basin, the Niushoushan-Luoshan area holds pivotal significance in unraveling the Mesozoic tectonic events within the basin's confines. Through a meticulous exploration employing apatite fission track (AFT) analysis and thermal history simulation, this study delineates the Mesozoic uplift sequence and its temporal confines in the Niushoushan-Luoshan area. The results reveal that the Mesozoic uplift within this region predominantly occurred during the Middle Jurassic period (170 Ma) to the end of the Early Cretaceous (110 Ma). Furthermore, we observe a slightly earlier onset of uplift in the Luoshan area (170 Ma) compared to the Niushoushan area (160 Ma). This uplift is primarily attributed to the north-eastward extrusion of the Qilian orogenic belt. Combining our findings with existing research, we propose that the Cenozoic uplift in the western margin of the Ordos Basin and its adjacent areas started during the Late Triassic, comprising two distinct phases: the first phase unfolding from the Late Triassic (220 Ma) to the end of the Early Jurassic (185 Ma), and the second phase occurring from the Middle Jurassic (175 Ma) to the end of the Early Cretaceous (110 Ma); the uplift in the Niushoushan-Luoshan area is part of the second phase of uplift along the western margin of the Ordos Basin. The two Cenozoic tectonic uplift phases along the western margin of the Ordos Basin display characteristics of north-to-south and southwest-to-northeast propagation, respectively. It is inferred to be associated with the Late Triassic collision between the North China and South China blocks, as well as the movement of the Lhasa Block converging toward the northeast during the Middle to Late Jurassic