148 research outputs found

    Oligocene clockwise rotations along the eastern Pamir: Tectonic and paleogeographic implications

    No full text
    International audienceDespite the importance of the Pamir range in controlling Asian paleoenvironments and land-sea paleogeography, its tectonic evolution remains poorly constrained in time and space, hindering its potential for understanding deep to surface processes. We provide here new constraints on vertical-axis tectonic rotations from the southwest Tarim Basin along the eastern flank of the Pamir arcuate range based on paleomagnetic results. Two well-dated Eocene to Oligocene sections, previously analyzed using biostratigraphy andmagnetostratigraphy, yield consistently clockwise rotations of 21.6±4.2° in 41 to 36Ma strata then 17.1±6.5° in 33 to 28Ma strata at the Aertashi section and 14.2 ± 11.5° in 41 to 40Ma strata at the Kezi section. Combined with a regional review of existing paleomagnetic studies, these results indicate that most of the clockwise rotations along the eastern Pamir occurred during Oligocene times and did not extend systematically and regionally into the TarimBasin. In contrast, on the western flank of the Pamir tectonic rotations in Cretaceous to Neogene strata are regionally extensive and systematically counterclockwise throughout the Afghan-Tajik Basin. This timing and pattern of rotations is consistent with paleogeographic reconstructions of the regional sea retreat out of Central Asia and supports a two-stage kinematic model: (1) symmetric rotations of either flanks of the Pamir arcuate range until Oligocene times followed by (2) continued rotations on its western flank associated with radial thrusting and, along the eastern flank, no further rotations due to decoupled transfer slip starting in the Early Miocene

    Large-scale displacement along the Altyn Tagh Fault (North Tibet) since its Eocene initiation: Insight from detrital zircon U–Pb geochronology and subsurface data

    No full text
    International audienceMarking the northern boundary of the Tibetan plateau, the Altyn Tagh fault plays a crucial role in accommodatingthe Cenozoic crustal deformation affecting the plateau. However, its initiation time and amount of offset are stillcontroversial despite being key information for the understanding of Tibet evolution. In this study, we present1122 single LA-ICP-MS detrital zircon U–Pb ages obtained from 11 Mesozoic to Cenozoic sandstone samples, collectedalong two sections in the northwestern Qaidam basin (Eboliang and Huatugou). These data are combinedwith new3D seismic reflection profiles to demonstrate that: (1) fromthe Paleocene to early Eocene, the Eboliangsection was approximately located near the present position of Anxi, 360 ± 40 km southwest from its currentlocation along the Altyn Tagh fault, and sediments were mainly derived from the Altyn Tagh Range. At thesame period, the Huatugou section was approximately located near the present position of Tula, ca. 360 kmsouthwest from its current location along the Altyn Tagh fault, and the Eastern Kunlun Range represented a significantsediment source. (2) Left-lateral strike-slip movement along the Altyn Tagh fault initiated during theearly-middle Eocene, resulting in northeastward displacement of the two sections. (3) By early Miocene, the intensivedeformation within the Altyn Tagh Range and northwestern Qaidam basin strongly modified the drainagesystem, preventing the materials derived fromthe Altyn Tagh Range to reach the Eboliang and the Huatugousections. The post-Oligocene clastic material in the western Qaidam basin is generally derived fromlocal sourcesand recycling of the deformed Paleocene to Oligocene strata. From these data, we suggest enhanced tectonic activitywithin the Altyn Tagh Range and northwestern Qaidam basin since Miocene time, and propose an earlymiddleEocene initiation of left-lateral strike-slip faulting leading to a 360 ± 40 km offset along the Altyn Taghfaul

    Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin

    No full text
    International audienceSituated along the western termination of the Eastern Kunlun Mountains, the Qimen Tagh Range represents a key area to understand the Cenozoic basin-range interactions between the northeastern Tibetan Plateau and the Qaidam Basin. Within that region, several huge bow-like fault systems such as the Kunbei and Qimen Tagh fault systems accommodate the transpressive deformation but their kinematic evolution is still highly debated. Newly acquired seismic profiles and isopach maps of the Late Eocene sediments strongly suggest that the Kunbei fault system (consisting of the Kunbei, Arlar and Hongliuquan faults) in the southwestern Qadaim Basin was initially a left-lateral strike-slip fault system rather than a thrusting system. Growth strata indicate an Early Miocene onset age for this strike-slip deformation. However, earthquake focal mechanisms show that the present-day tectonic pattern of this fault system is dominated by NE-SW transpression. As for the Qimen Tagh fault system, numerous linear geomorphic features and fault scarps indicate that it was again a strike-slip fault system. Deformed sediments within the Adatan Valley prove that strike-slip motion prevailed during the Pleistocene, yet the present day deformation is marked by NE-SW transpression. Collectively, the Kunbei and Qimen Tagh fault systems were initially left-lateral strike-slip fault systems that formed during Early Miocene and Pleistocene respectively. Colligating with these southward younging left-lateral strike-slip faulting ages and the fact that these convex-northward structures converge to the center segment of active Kunlun fault in the east, we thus considered the Kunbei and Qimen Tagh fault systems as former western segments of the Kunlun fault once located further south in the present-day location of that fault. These faults gradually migrated northward since the Early Miocene while their kinematics changed from left-lateral strike-slip motion to NE-SW transpression

    Ophiolitic mélanges in crustal-scale fault zones: implications for the Late Palaeozoic tectonic evolution in West Junggar, China

    Get PDF
    Publisher's Version/PDFThe Baijiantan and Darbut ophiolites in West Junggar are exposed in steep fault zones (>70°) containing serpentinite mélange, in contact on either side with regionally distributed Upper Devonian-Lower Carboniferous ocean floor peperitic basalts and overlying sedimentary successions. The ophiolitic mélanges show classic structural features created by strike-slip faulting and consistent shear sense indicators of left-slip kinematics. Sandstone blocks within the mélanges resemble the surrounding sediments in lithology and age, indicating that the ophiolitic mélanges consist of locally derived rocks. The ophiolitic mélanges therefore originated from left-slip fault zones within a remnant basin and are not plate boundaries nor subduction suture zones. Sandstone is the youngest lithology involved in the mélange and provides a maximum age for the mélange of 322 Ma, whereas stitching plutons are younger than 302 Ma. Multiple clusters in zircon ages from single gabbro blocks in the mélange at ~375, ~360, ~354, and ~340 Ma are inconsistent with accretionary incorporation of subducting ocean crust but rather suggest that episodic movement of the faults provided pathways for magma from the mantle into magma chambers. Late Paleozoic tectonic evolution of West Junggar involved Late Devonian to Carboniferous relative motion between the Junggar block and West Junggar ocean basin, which triggered the left-slip fault zones within a remnant ocean basin, along which the oceanic crust was disrupted to form linear ophiolitic mélanges. Final filling of this remnant ocean basin and its dismemberment by strike-slip faulting occurred in the late Carboniferous, followed by crustal thickening by juvenile granites at the Carboniferous-Permian boundary

    Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China)

    No full text
    International audienceA vast shallow epicontinental sea extended across Eurasia and was well-connected to the Western Tethys before it retreated westward and became isolated as the Paratethys Sea. However, the palaeogeography and the timing of this westward retreat are too poorly constrained to determine potential wider environmental impacts, let alone understanding underlying mechanisms of the retreat such as global eustasy and tectonism associated with the Indo-Asia collision. Here, an improved chronostratigraphic and palaeogeographic framework is provided for the onset of the proto-Paratethys Sea retreat at its easternmost extent in the Tarim Basin in western China is provided. Five different third-order sea-level cycles can be recognised from the Cretaceous-Palaeogene sedimentary record in the Tarim Basin, of which the last two stepped successively westwards as the sea retreated after the maximum third incursion. New biostratigraphic data from the fourth and fifth incursions at the westernmost margin of the Tarim Basin are compared to our recent integrated bio-magneto-stratigraphic results on the fourth incursion near the palaeodepocentre in the south-western part of the basin. While the fourth incursion extended throughout the basin and retreated at ~ 41 Ma (base C18r), the last and fifth incursion is restricted to the westernmost margin and its marine deposits are assigned a latest Bartonian-early Priabonian age from ~ 38.0 to ~ 36.7 Ma (near top C17n.2n to base C16n.2n). Similar to the fourth, the fossil assemblages of the fifth incursion are indicative of shallow marine, near-shore conditions and their widespread distribution across Eurasia suggests that the marine connection to the Western Tethys was maintained. The lack of diachronicity of the fourth incursion between the studied sections across the southwest Tarim Basin suggests that the sea entered and withdrew relatively rapidly, as can be expected in the case of eustatic control on a shallow epicontinental basin. However, the westward palaeogeographic step between the fourth and fifth incursions separated by several millions of years rather suggests the combined long-term effect of tectonism, possibly associated with early uplift of the Pamir-Kunlun Shan thrust belt. The fourth and fifth regressions are time-equivalent with significant aridification steps recorded in the Asian interior, thus supporting climate modelling results showing that the stepwise sea retreat from Central Asia amplified the aridification of the Asian interior

    Mesozoic–Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data

    Get PDF
    This study uses apatite fission track (FT) analysis to constrain the exhumation history of bedrock samples collected from the Altai Mountains in northern Xinjiang, China. Samples were collected as transects across the main structures related to Palaeozoic crustal accretion events. FT results and modeling identify three stages in sample cooling history spanning the Mesozoic and Tertiary. Stage one records rapid cooling to the low temperature part of the fission track partial annealing zone circa 70 ± 10 °C. Stage two, records a period of relative stability with little if any cooling taking place between 75 and 25–20 Ma suggesting the Altai region had been reduced to an area of low relief. Support for this can be found in the adjacent Junngar Basin that received little if any sediment during this interval. Final stage cooling took place in the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. This last stage, linked to the far field effects of the Himalayan collision, most likely generated the surface uplift and relief that define the present-day Altai Mountains

    The Eurasian epicontinental sea was an important carbon sink during the Palaeocene-Eocene thermal maximum

    Get PDF
    The Palaeocene-Eocene Thermal Maximum (ca. 56 million years ago) offers a primary analogue for future global warming and carbon cycle recovery. Yet, where and how massive carbon emissions were mitigated during this climate warming event remains largely unknown. Here we show that organic carbon burial in the vast epicontinental seaways that extended over Eurasia provided a major carbon sink during the Palaeocene-Eocene Thermal Maximum. We coupled new and existing stratigraphic analyses to a detailed paleogeographic framework and using spatiotemporal interpolation calculated ca. 720–1300 Gt organic carbon excess burial, focused in the eastern parts of the Eurasian epicontinental seaways. A much larger amount (2160–3900 Gt C, and when accounting for the increase in inundated shelf area 7400–10300 Gt C) could have been sequestered in similar environments globally. With the disappearance of most epicontinental seas since the Oligocene-Miocene, an effective negative carbon cycle feedback also disappeared making the modern carbon cycle critically dependent on the slower silicate weathering feedback.</p

    Evolution of kinematic transformation from the Altyn Tagh fault to the Qilian Shan in the northern Tibetan Plateau: from early Cenozoic initiation to mid-Miocene extrusion

    Get PDF
    The Altyn Tagh fault has been a crucial tectonic boundary of the Tibetan Plateau during the Cenozoic India-Eurasia collision. However, issues have not been addressed regarding the Cenozoic evolution of the kinematic transformation from the eastern Altyn Tagh fault to the Qilian Shan. Here we focus on the kinematics at a crucial point, the Subei triple junction, along the Altyn Tagh fault, which was recorded by faulting in the Suganhu basin to the south of the junction. We reconstructed the structural pattern of faults and thickness distribution of the Cenozoic strata in the Suganhu basin by integrating seismic profiles, well logging, and topographic data. We inferred that only crustal shortening and thickening in the Danghenan Shan, a prominent topographic high, absorbed the strike-slip displacement along the Altyn Tagh fault during the early Cenozoic. Since the mid-Miocene, strike-slip fault belts within the Suganhu basin were initiated, based on the fault geometry and uneven thickness distribution across the fault belts. We thus proposed a mid-Miocene kinematic transformation realized by blocks extruding southeastward, as well as the crustal shortening and thickening in the entire Qilian Shan. Those blocks are bounded by preexisting weaknesses with lateral movements, and lithospheric heterogeneity played an essential role in the block-scale extrusion

    Chromosome-level genome assembly of the yellow boxfish (Ostracion cubicus) provides insights into the evolution of bone plates and ostracitoxin secretion

    Get PDF
    The Ostracion cubicus, commonly known as the yellow boxfish, is a remarkable species with a body encased in a bone plate and the ability to produce an ostracitoxin from their skin when under stress. However, the genetic basis of those effective defense traits is still largely unknown due to the lack of genomic resources. Here, we assembled the first chromosome-level genome of O. cubicus with 867.50 Mb in genome size and 34.86 Mb N50 scaffold length by HiFi and Hi-C sequencing. Twenty-five pseudo-chromosomes, numbered according to size, covered 94.13% of the total assembled sequences. A total of 23,224 protein-coding genes were predicted, with a BUSCO completeness of 98.6%. Positive selection or rapid evolution was observed in genes related to scale and bone development (acsl4a, casr, keap1a, tbx1), and up-regulation of transcription was found in the skin of boxfish (bmp1, bmp2k, bmp4, bmp7, smad5, suco, prelp, mitf), likely associated with the bone plates evolution in the yellow boxfish. An expansion of the solute carrier family 22, a cluster of genes in solute carrier (SLCs) family, transmembrane protein family (TMEMs), vesicle trafficking (SECs), ATP-binding cassette (ABCs) and apolipoproteins (APOs) were identified under positive selection, rapid evolution, or up-regulated in the skin of boxfish, likely associated with the ostracitoxin secretion in the yellow boxfish. Our study not only presents a high-quality boxfish genome but also provides insights into bone plates evolution and ostracitoxin secretion of O. cubicus
    • …
    corecore