7,476 research outputs found

    MetaLDA: a Topic Model that Efficiently Incorporates Meta information

    Full text link
    Besides the text content, documents and their associated words usually come with rich sets of meta informa- tion, such as categories of documents and semantic/syntactic features of words, like those encoded in word embeddings. Incorporating such meta information directly into the generative process of topic models can improve modelling accuracy and topic quality, especially in the case where the word-occurrence information in the training data is insufficient. In this paper, we present a topic model, called MetaLDA, which is able to leverage either document or word meta information, or both of them jointly. With two data argumentation techniques, we can derive an efficient Gibbs sampling algorithm, which benefits from the fully local conjugacy of the model. Moreover, the algorithm is favoured by the sparsity of the meta information. Extensive experiments on several real world datasets demonstrate that our model achieves comparable or improved performance in terms of both perplexity and topic quality, particularly in handling sparse texts. In addition, compared with other models using meta information, our model runs significantly faster.Comment: To appear in ICDM 201

    Novel Compact Three-Way Filtering Power Divider Using Net-Type Resonators

    Get PDF
    In this paper, we present a novel compact three-way power divider with bandpass responses. The proposed power divider utilizes folded net-type resonators to realize dual functions of filtering and power splitting as well as compact size. Equal power ratio with low magnitude imbalance is achieved due to the highly symmetric structure. For demonstration, an experimental three way filtering power divider is implemented. Good filtering and power division characteristics are observed in the measured results of the circuit. The area of the circuits is 14.5 mm x 21.9 mm or 0.16 λg x 0.24 λg, where the λg is the guide wavelength of the center frequency at 2.1 GHz

    Methyl 3-methyl-5-oxo-4-(phenyl­hydrazono)-4,5-dihydro-1H-pyrazole-1-carbodithio­ate

    Get PDF
    The title compound, C12H11N4OS2, has been synthesized by the condensation reaction of 3-oxo-2-(phenyl­hydrazono)butanate and S-methyl­dithio­carbazate. The hydrazine unit and the pyrazole ring are coplanar [dihedral angle 3.8 (4)°] due to extensive conjugation and the N—H⋯O=C intra­molecular hydrogen bond. Two adjacent mol­ecules form dimers due to short C—H⋯O=C [R 2 2 (18)] and C—H⋯S=C [R 2 2 (22)] inter­molecular inter­actions. C—H⋯S—C [R 2 2 (14)] inter­actions link these dimers into ribbons in the [011] direction
    corecore