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A B S T R A C T   

Accurate simulation of foundation response subjected to repeated loading require reliable sand constitutive 
models to reproduce realistic sand cyclic behaviour. Many elastoplastic constitutive models adopted the hypo-
elasticity law, which results in physically inaccurate strain accumulation prediction of soil when subjected to 
elastic cyclic loading. To address this issue, the existing elastoplastic bounding surface model SANISAND-MS has 
been upgraded with a hyperelastic formulation that is derived from the Helmholtz free energy function. The 
complete form of the derived nonlinear elasticity functions enhanced by stress induced anisotropy is presented in 
this work. The calibration of the upgraded SANISAND-MS is briefly discussed. It is demonstrated that the 
hyperelastic formulation with volumetric-deviatoric coupling: (1) guarantees no accumulation of elastic strain 
upon elastic cyclic loading, and (2) captures the stress-induced anisotropy of sand under reverse loading. This 
upgraded SANISAND-MS model with a physical adaptation and thermodynamically consistent elasticity law can 
predict strain accumulation accurately and is physically appropriate. Moreover, the upgraded SANISAND-MS is 
suitable for simulating problems with high-cyclic loads and is able to be used in boundary value problem sim-
ulations in areas including offshore engineering and railway engineering.   

1. Introduction 

Mobilization of small strain response of soil is widely encountered in 
geotechnical problems, such as offshore wind turbine foundations (Oh 
et al., 2018) and railway engineering (Debnath et al., 2022). There are 
two circumstances associated with small strain states in offshore foun-
dations. The first is related to foundations subjected to high-cyclic 
loading with very small amplitudes, where limited irreversible cyclic 
strain is developed. The other is that during cyclic loading, upon 
unloading, the stress state evolution is reversed, and the soil behaves 
elastically. Determining parameters related to the small strain behav-
iour, such as initial stiffness and shear modulus, is critical in practice- 
oriented numerical analysis (Lashkari, 2010; Kallehave et al., 2012; 
Oh et al., 2018; Liu and Kaynia, 2021). Linear elasticity is the most direct 
way to represent the small strain mechanical behaviour of soil in the 
elastic domain at small strains. Nonlinear and anisotropic behaviour in 
elastic deformation with small shear stresses (Einav, 2012) has usually 
been overlooked. However, considering the nonlinear and anisotropic 
elasticity in the range of small strains is an important issue when 

predicting sand ratcheting for offshore foundations under serviceability 
conditions. 

There are various advanced elastoplastic constitutive models capable 
of modeling soil behaviour across a wide range of strains, which is 
essential for a complete analysis of geotechnical problems. For clay 
monotonic behaviour simulations, Yao et al. (2009) developed a unified 
hardening (UH) model which can well capture various clay mechanical 
behaviours including strain hardening and strain softening, shear- 
induced dilatancy and stress path dependent features. The UH model 
provides a flexible and efficient model framework that allows easy 
modifications to achieve behaviour-specific improvement. Yao et al. 
(2019) developed CSUH based on the UH model framework. The CSUH 
model is the first unified model that can accurately predict both sand 
and clay monotonic behaviour. 

For predicting the cyclic response of sands under long lasting cyclic 
loading, Dafalias and Manzari (2004) developed the critical state 
SANISAND04 model to reproduce fabric effects relevant to cyclic soil 
response. Following SANISAND04, many other SANISAND models have 
been developed (Taiebat and Dafalias, 2008; Lashkari, 2010) for 
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different purposes. Tasiopoulou and Gerolymos (2016) built the so- 
called ’Ta-Ger’ model based on a framework that combines the the-
ories of perfect elastoplasticity and smooth hysteresis. The model is able 
to predict sand cyclic behaviour including cyclic liquefaction and cyclic 
mobility. Liu et al. (2019) and Liu et al. (2020) considered the load 
induced anisotropy of sand and proposed a memory-enhanced SANI-
SAND-MS model to be able to accurately predict sand ratcheting 
behaviour under various loading paths. The elastic behaviour of many 
elasto-plastic constitutive models is assumed to be linear isotropic or 
obeys a hypoelasticity law derived from empirical formulations. A 
typical hypoelasticity law proposed by Richart et al. (1970) was adopted 
by many elasto-plastic constitutive models (Li and Dafalias, 2001; 
Dafalias and Manzari, 2004; Taiebat and Dafalias, 2008; Lashkari, 
2010). The law is achieved by adopting the linear Hooke’s law with the 
development of tangent shear modulus over the variation of void ratio 
and confining pressure. However, the formulation of such an elasticity 
framework is proven to violate the first law of thermodynamics, the 
large accumulated residual strain is observed in the soil element even 
subjected to elastic cyclic loading (Simo and Pister, 1984; Lin, 2003; 
Xiao et al., 2005; Einav, 2012; Korobeynikov, 2019). Thus, the use of the 
incorrect physical hypoelastic relationship may result in a non- 
conservative response and inevitably accumulate elastic deformation 
energy under high-cyclic loads, which should be corrected in the model 
formulation for physical adaptation. 

Differing from hypoelastic laws, hyperelasticity is a convenient 
approach to modeling the reversible behavior of soils with thermody-
namic consistency. Many hyperelasticity models have been proposed in 
the literature. Some of these models are attempted to account for the 
features of pressure dependency and anisotropy in soils at the reversible 
regime. Gajo and Bigoni (2008) considered two varying exponents 
(denoted by l and n in their works) to describe the soil’s nonlinearity and 
constructed a nonlinear anisotropic hyperelasticity law from a free en-
ergy function. The model is able to capture the soil’s anisotropy 
behavior but could result in development of Poisson’s ratio with 
different stress states under some specific conditions as proven by 
Amorosi et al. (2020). Cudny and Partyka (2017) developed a nonlinear 
isotropic hyperelastic model by incorporating a second-order fabric 
tensor to the complementary function proposed by Vermeer (1982). 
However, the model can only account for the transverse isotropic 
behavior of soils. 

Einav and Puzrin (2004) investigated the consequences of combing 
conventional hypoelasticity law (energy non-conservative elasticity) 
and hyperelasticity law (energy conservative elasticity) within a plas-
ticity framework. The models had been applied to study the effects of 
elasticity law on the real boundary value problem simulations. It 
concluded that significant effect on the accuracy of the model pre-
dictions can be found in tunnel excavation problem. Such a study puts 
emphasis on the importance of selecting theoretically rigorous and 
practically accurate elasticity law in geotechnical engineering problem 
studies. Despite the exploration of the elasticity law effects on object 
monotonic behaviour, few works focus on the effects on the cyclic 
perspective (for instance, the cyclically loaded offshore foundations). 

Recently, a memory-enhanced constitutive model for sand, 
SANISAND-MS, has been developed to capture the ratcheting effects in 
sands that occur in high-cyclic loading (Liu et al., 2019, Liu et al., 2020). 
SANISAND-MS model is an elasto-plastic model based on bounding 
surface theory and a critical state framework. The model takes into ac-
count the effects of soil fabric and it evolves on sand cyclic behaviour 
through the so-called ’memory surface’. The model is proven to be 
capable of reproducing the representative, both monotonic and cyclic 
behaviour of sand. This model has been successfully implemented in the 
OpenSees Software to support the cyclic analysis of offshore founda-
tions. However, the hypoelasticity law adopted in the model may result 
in less accurate strain accumulation in high cyclic loading simulations 
(Houlsby et al., 2005). It will consequently influence the accuracy of 
finite element simulation when applying the model to real boundary 

problem simulations. It is pertinent to modify the elastic relationship 
and consider the elastic energy conservation inside the yield locus to 
more robustly predict the strain accumulation. 

The objective of this work is to employ a physically consistent elas-
ticity theory – hyperelasticity law in the well accepted bounding surface 
plasticity models. This is achieved by replacing the original hypo-
elasticity law in the original SANISAND-MS model with a hyperelasticity 
theory proposed by Houlsby et al. (2019). Parameter calibrations of the 
upgraded model will be conducted. Monotonic and cyclic performance 
regarding the diversity of initial confining pressures, void ratios, and 
cyclic amplitudes will be presented against the experimental data and 
the original SANISAND-MS model. Moreover, the effects of the changing 
elasticity on the unloading responses and soil behaviour subjected to a 
closed elastic stress path will be discussed from a qualitative perspective. 

2. Hyperelastic upgrade and calibration of SANISAND-MS model 

In this work, the geotechnical sign convention (positive for 
compression) is assumed and the summation convention is adopted. 
Tensors are written in component-free boldface. Considering the Car-
tesian basis ei, ej, ek and el, two arbitrary second-order tensors b and c 
can be written as b = bijeiej and c = cklekel, respectively. The tensor 
operation signs ⊗ and ⊗ can be defined as b ⊗ c = bijckleiejekel and 
b⊗c = bikcjleiejekel, respectively. The trace of a tensor (for instance, b) is 
denoted by tr() (thus the trace of b can be written as tr(b) = bii). The 
inner product of b and c is defined by bc = bikckjeiej. The colon “:” stands 
for the double product of two tensors. For the second order tensor cal-
culations, the double product returns the trace of the product of the two 
second order tensors. For example, b : c = tr(bc). The second-order 
identity tensor I is defined as I = δijeiej, where δij indicates the Kro-
necker delta. Fourth-order tensors are written in double-line boldface, e. 
g. the stiffness tensor D. 

Effective stress in the geotechnical convention is represented by 
adding a prime to a stress component (stress state). However, in this 
work, all stress states are effective, and primes are therefore skipped for 
simplicity. The strain tensor ε and effective stress tensor σ can conse-
quently be defined as ε = e+1/3tr(ε)I and σ = s + 1/3tr(σ)I, where e is 
deviatoric strain tensor and s stands for deviatoric stress tensor. The 
superscript sym of a second-order tensor indicates the symmetrized 
tensor, i.e., εsym = 1/2(ε+ εT), where the superscript T represents 
transposition. The invariants involved in this study include the mean 
effective stress p = 1/3tr(σ), deviatoric stress q =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3/2tr(s2)

√
, volu-

metric strain εv = tr(ε), and deviatoric strain εq =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2/3tr(e2)

√
. The 

subscript in denotes the initial value of a quantity, e.g., ein stands for the 
initial void ratio. E and C represent elastic strain energy and comple-
mentary energy functions, respectively. 

2.1. Inclusion of a hyperelastic law 

SANISAND-MS model (Liu et al., 2019) is an elasto-plastic model 
built based on the bounding surface plasticity theory and critical state 
framework. SANISAND-MS model includes three loci (Fig. 1): (a) a 
narrow conical yield locus (f); (b) a wide conical bounding locus (fb); (c) 
a conical memory surface (fm). Fabric related effects to sand high-cyclic 
behaviour are taken into account by the so-called ‘memory surface’. The 
model performs well in capturing soil high-cyclic element test response 
under varying stress levels, relative densities and initial confining 
pressures. 

In the SANISAND-MS model, the hypoelasticity law proposed by 
Richart et al. (1970) is adopted to simulate the sand behaviour inside the 
yield locus (f). The stiffness tensor is computed with Hooke’s law. The 
shear and bulk moduli (G and K) vary with void ratios and confining 
pressures (Richart et al., 1970; Li and Dafalias, 2002) in the forms: 
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G = G0pat
(2.97 − e)2

1 + e

(
p

pat

)1
2

(1)  

K =
2(1 + ν)
3(1 − 2ν)G (2) 

In the equations, G0 is a dimensionless shear stiffness parameter; pat is 
the reference atmospheric pressure; e and p represent the current void 
ratio and the mean effective stress, respectively; ν is Poisson’s ratio. 

The relationships defined by Eqs. (1) and (2) cannot guarantee the 
fully recoverable elastic behaviour of a material under closed elastic 
load paths (Zytynski et al., 1978). Thus, it might violate the law of 
thermodynamics. Such a statement can be visualized in Fig. 2. A closed 
pure elastic loading path (A1)-(A2)-(A3)-(A4)-(A5) in triaxial stress 
space is applied (see Fig. 2(a)). The material is first subjected to an in-
crease in deviatoric stress q at constant mean effective stress p, from 
point A1 to point A2, followed by an increase in p at constant q until 
point A3. Under constant p from point A3, the deviatoric stress q is 
reduced until point A4. In the final stage, the mean effective stress is 
reduced so that the stress state returns to its initial value at point A1. 
This closed elastic stress path is designed to demonstrate a reversible 
process. The corresponding responses of deviatoric stress versus devia-
toric strain (B1-B5), volumetric strain versus deviatoric strain (C1-C5) 
and mean effective stress versus volumetric strain (D1-D5) for this stress 
path are depicted in Fig. 2(b), Fig. 2(c) and Fig. 2(d), respectively. 

It is well recognised that elastic materials accumulate no deforma-
tion after the applied load is removed. However, as shown in Fig. 2(b), 
the non-closed deviatoric strain εq loop (point B5 is different from point 
B1) indicates that εq can not fully recover in a closed elastic loading 
path. As observed in Fig. 2(c) and Fig. 2(d), the simulated elastic volu-
metric strain εv can completely recover (points C1 and C5 have the same 
εv value). Nevertheless, residual εq is observed in Fig. 2(b) and Fig. 2(c). 
The irreversible elastic deviatoric strain εq violates the description of the 
’elasticity’ theory and lacks the principle of energy conservation during 
a reversible process. 

To amend such limitations, the hyperelasticity law proposed by 
Houlsby et al. (2019) is used in the upgraded SANISAND-MS model. The 
adopted hyperelasticity law suggests that stress σ can be rigorously 
derived from an elastic strain energy E(ε) by partial differentiate E(ε)
with respect to the strain tensor: σ = ∂E(ε)/∂ε. The other equivalent 
form is that the strain tensor ε is a partial differential of complementary 
energy C (σ) with respect to the stress tensor: ε = ∂C(σ)/∂σ. The two 
forms can be related to each other by Legendre transform: E(ε) + C(σ) =

σ: ε. Herein, the former was conducted. 
The nonlinearity and anisotropy of soil were discussed indepen-

dently by Houlsby et al. (2019). Amorosi et al. (2020) presented a 
simplified nonlinear anisotropic hyperelastic formulation with the 
switch parameter N = 0, which defines the datum point for stress at zero 
strain. However, the complete form of coupling the nonlinearity and 
anisotropy (i.e., using N ∕= 0) is not presented in the two works 

mentioned above but is introduced in this section. The elastic strain 
energy function proposed by Houlsby et al. (2019) can be written in the 
general form: 

E(ε, a) = Pr

k(2 − n)

[
r0

2− n
1− n − N

]

(3) 

Where Pr is an arbitrary reference pressure (for convenience, Pr is 
taken as the atmospheric pressure pat, 101.3 kPa); k is a dimensionless 
bulk modulus; 0 ≤ n < 1 is a parameter controlling the nonlinearity 
dependence on pressure; N = 1 is adopted in this model; ε is the 
equivalent strain tensor that can be expressed by ε = aεa; a is a sym-
metric fabric tensor accounting for anisotropy of soil that stems from 
internal microstructural features (Lashkari, 2010; Amorosi et al., 2020; 
Mital et al., 2020). With the normalized method, i.e., set det(a) = 1, the 
fabric tensor a can be defined as: 

a =

⎡

⎢
⎢
⎢
⎢
⎣

y1
3 0 0

0 y1
3 0

0 0 y− 2
3

⎤

⎥
⎥
⎥
⎥
⎦

(4) 

Fig. 1. Relevant loci in the deviatoric stress ratio plane (modified after Liu 
et al., 2019). 

Fig. 2. Closed elastic stress path test under the same initial confining pressure 
and void ratio. Simulations with (a)~(d) hypoelastic model (Richart et al., 
1970), (e)~(h) hyperelastic model (Houlsby et al., 2019). 
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where y2 is equal to the shear modulus ratio Ghh/Gvh (assuming the 3rd 
axis is vertical direction). Ghh and Gvh are horizontal and vertical shear 
moduli which can be measured by bender element probing (Amorosi 
et al., 2020). The expression of y can be given as: 

y = a11/a33 (5) 

It is worth noting that Eq. (4) will reduce to the identity tensor which 
represents the isotropic elasticity while applying y = 1, without loss of 
generality. 

In Eq. (5), a11 and a33 are the two diagonal values of the fabric tensor 
a, which is an original form of Eq. (4) expressed as (Houlsby et al., 
2019): 

a =

⎡

⎢
⎢
⎣

a11 0 0

0 a22 0

0 0 a33

⎤

⎥
⎥
⎦ (6) 

Three diagonal eigenvalues of the fabric tensor a were employed to 
evaluate the diversity of soil inherent fabric in different directions. 
Nevertheless, for simplicity, only transverse anisotropy was considered 
(assuming the 3rd axis is vertical direction), where a11 = a22 ∕= a33, and 
the parameter y was applied in the upgraded SANISAND-MS model. 

The term r0 in Eq. (3) is a positive root of Amorosi et al. (2020): 

r0
2 = k(1 − n)

{[

k(1 − n)

−
2
3

g
]

tr2(ε)+ 2gtr(εsym2
)

}

+N[N − 2k(1 − n)tr(ε) (7) 

Where εsym is a symmetric equivalent strain tensor; g is the dimen-
sionless shear modulus. The modulus k and g are related by Poisson’s 
ratio ν as g

k =
3(1− 2ν)
2(1+ν) .

From the basic definition of hyperelasticity, the stress tensor can be 
obtained as: 

σ =
∂E(ε, a)

∂ε =
∂E(ε, a)

∂ε :
∂ε
∂ε

(8) 

Further differentiate to Eq. (8), one can get the increment of stress 
tensor: 

σ̇ =
∂σ
∂ε : ε̇ =

[
∂ε
∂ε :

∂2E(ε, a)
∂ε ⊗ ∂ε :

∂ε
∂ε

]

: ε̇ (9) 

Making differentiation to Eq. (3) with respective to ε, it flows that: 

∂E(ε, a)
∂ε =

Pr

k(1 − n)
r0

1
1− n

∂r0

∂ε (10) 

Further differentiation: 

∂2E(ε, a)
∂ε ⊗ ∂ε =

Pr

k(1 − n)

(
1

1 − n
r0

n
1− n

∂r0

∂ε ⊗
∂r0

∂ε + r0
1

1− n
∂2r0

∂ε ⊗ ∂ε

)

(11) 

Note the differential: 

∂ε
∂ε =

∂(aεa)
∂ε = a⊗a (12) 

Differentiating Eq. (7) with respect to ε, one can get the differential: 

∂r0

∂ε =
k(1 − n)

r0

{[

k(1 − n) −
2
3

g
]

tr(ε)I+ 2gεsym
}

−
kN(1 − n)I

r0
(13) 

Further differentiation to Eq. (13): 

∂2r0

∂ε ⊗ ∂ε =
1
r0

{

k(1 − n)
[

k(1 − n) −
2
3

g
]

I ⊗ I + 2gk(1 − n)I ⊗ I −
∂r0

∂ε ⊗
∂r0

∂ε

}

(14) 

Substituting Eq.(11)~(14) into Eq. (9), the elastic stiffness tensor D 

can be obtained as: 

D =
Pr

k(1 − n)
a⊗a :

(
1

1 − n
r0

n
1− nA ⊗ A + r0

1
1− nC

)

: a⊗a (15) 

Where A = ∂r0
∂ε and C = ∂2r0

∂ε⊗∂ε, are given by Eq. (13) and Eq. (14), 
respectively. 

The adopted hyperelasticity law guarantees the conservation of en-
ergy under a closed elastic stress path. As shown in Fig. 2(e)~(h), the 
same closed elastic loading path (A1)-(A2)-(A3)-(A4)-(A5) is simulated 
by the hyperelasticity law. Different from the hypoelasticity law, the 
soil response forms a closed loop for the corresponding q versus εq, εv 

versus εq and p versus εv (in that the initial and final states are identical) 
as depicted in Fig. 2(f), Fig. 2(g) and Fig. 2(h), respectively. This implies 
that there is no production or dissipation of energy under a close loop 
loading path, which proves the thermodynamic consistency of the 
hyperelasticity law. Such improvement mends the shortcomings of the 
hypoelasticity formulas adopted in the original SANISAND-MS model. 
This phenomenon has also been investigated and reported by Golchin 
et al. (2022). The upgraded SANISAND-MS model equations are sum-
marized in Table 1. 

The elasticity theory has been developed in the previous sections, the 
remaining of the upgraded SANISAND-MS model remains the same as 
that described by Liu et al., (2019), which will not be presented in this 
work for the sake of simplicity. All model parameters are briefly intro-
duced in the third column of the table. The calibrations of the model 
parameters are discussed in the following sections. 

2.2. Calibration of monotonic parameters 

The model parameters of the upgraded SANISAND-MS can be 
divided into a monotonic subset (from n to nd in Table 2) and a cyclic 
subset (from μ0 to β in Table 2). The selection of the cyclic model pa-
rameters will not affect the model’s monotonic performance as 
described by Liu et al. (2019). 

For the monotonic subset, the parameters related to the hyper-
elasticity law, i.e., n, k, y and ν (additional two more compared to those 
used by the hypoelasticity law – G0 and ν), need to be calibrated first 
according to the approach presented by Amorosi et al. (2020). To be 
specific, the elastic parameters can be calibrated based on the evolution 
of the shear elastic modulus and bulk modulus along a specific stress 
path. To achieve this, dynamic field techniques such as cross-hole tests 
or measurements with laboratory bender elements can be used. After the 
elasticity parameters are determined, the calibration of model parame-
ters M to β as listed in Table 2 can be determined based on the laboratory 
element test results. The critical state related model parameters, which 
are expected to be directly informed by the laboratory test measured 
critical state line, need to be determined first. The plasticity model pa-
rameters nb and nd can be determined through the peak strength of the 
sand and the phase transformation state. The rest parameters belonging 
to the monotonic set need to be determined by trial and error to obtain 
the best match with, for example, a monotonic triaxial test. The required 
laboratory test type and parameter calibration procedure (including 
both the monotonic and cyclic sets of the model parameters) are 
described in detail by Liu et al. (2019) and Liu & Pisanò (2019). In this 
work, drained monotonic triaxial experimental data of Karlsruhe fine 
quartz sand carried out by Wichtmann (2005) are used to calibrate the 
monotonic subset model parameters. The calibrated model parameters 
are listed in Table 2. In Fig. 3, the simulation results using the upgraded 
SANISAND-MS model are compared with the original SANISAND-MS 
simulation results and the experimental results. 

According to Fig. 3, the stress and strain response of the upgraded 
SANISAND-MS is in good agreement with the test data obtained by 
Wichtmann (2005) and the simulation results of Liu’s et al. (2019). It 
indicates that the calibrated model parameters are representative to 
reproduce the monotonic behaviour of the Karlsruhe fine quartz sand. 
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2.3. Calibration of the cyclic subset parameters 

The calibrations of the cyclic subset of the model parameters are 
accomplished by the best-fitting of drained cyclic triaxial test results, 
particularly in the presence of anisotropic consolidation prior to shear 
cycling. The stress path of such tests can be sketched as Fig. 4(a) (along 
the denoted number: ①-②-③-④-⑤-③-④-⑤…), where qampl is cyclic 
amplitude, qave stands for cyclic average value, thus the average stress 
ratio ηave can be defined as ηave = qave/pin. 

Under the premise of the relatively small load ratio (i.e., under which 
condition the stress state does not enter the dilative regime), the in-
fluences of parameters ζ and β are negligible in drained loading cases 
according to Liu et al. (2019). The calibration procedure of ζ and β, 
which can be found in Liu et al. (2019), is out of the interest of the 
current work. The same values for ζ and β as in Liu et al. (2019) are 

adopted. 
The calibration of μ0 is accomplished by fitting the ratcheting 

response (or the accumulated strain εacc against the number of loading 
cycles N). εacc is defined as the accumulated total strain for the regular 
cycles using the following expression: 

εacc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
3
(
εacc

vol

)2
+

3
2

(
εacc

q

)2
√

(11) 

where εacc
vol ,εacc

q are volumetric and deviatoric accumulated strain, 
respectively. The definition of the ‘regular cycles’ is given in Fig. 4(b). 

Fig. 5 shows the simulation results of the upgraded SANISAND-MS 
model using different μ0 values. The accumulated total strain de-
creases as the μ0 value increases. μ0 = 260 allows the upgraded 
SANISAND-MS to give a good agreement with the test results (Wicht-
mann, 2005) and simulation results of the original SANISAND-MS (Liu 
et al., 2019). Figs. 2, 3 and 5 prove that the inclusion of a hyperelastic 
law into the original SANISAND-MS framework makes the model 
comply with physics law without worsening the behaviour of the orig-
inal SANISAND-MS. 

3. Performance of the upgraded SANISAND-MS model 

3.1. Effects of the elasticity law on the undrained unloading response 

The original and updated SANISAND-MS models use a narrow yield 
locus to represent the purely elastic behavior of sand – the onset of the 
sand behaviour upon unloading/reloading can be assumed and simu-
lated within this range. The elastic range is controlled by the size of the 
yield surface through the yield surface parameter m. Larger m results in a 
larger elastic range. However, one may also consider adopting a zero- 
elastic range modelling approach within the same model framework, 
as presented by Dafalias and Taiebat (2016). 

In the original SANISAND-MS, the adopted elasticity results in 
isotropic elasticity. Under undrained triaxial unloading, the tangent to 
the stress path in the elastic range is vertical by the original SANISAND- 
MS prediction, see the dash-dotted line in Fig. 6. Such a vertical tangent 
line disagrees with the observations from the experimental results, as 
has been pointed out by, e.g., Graham and Houlsby (1983), Verdugo and 
Ishihara (1996), Houlsby et al. (2005), Lashkari et al. (2021). 

The hyperelasticity law adopted in the upgraded SANISAND-MS 
leads to an incrementally anisotropic elastic material behaviour. Such 
an adjustment of the elasticity law in the upgraded SANISAND-MS 
model reproduces the desired cross-coupling of the deviatoric and 
volumetric behaviour of sand as indicated by Amorosi et al. (2020). For 

Table 1 
Formulas of the upgraded SANISAND-MS model.   

Constitutive equations Material parameters 

Elastic stiffness 
tensor D =

Pr

k(1 − n)
(a⊗a) :

(
1

1 − n
r0

n
1 − nA ⊗ A 

v Poisson ratio 

+r0

1
1 − nC

)
: (a⊗a)

n nonlinearity 
parameter 

Eqs. (4)~(5) and (7) k dimensionless bulk 
modulus 
y inherent anisotropy 
parameter 

Eqs. (13)~(14) 

Critical state 
line 

ec = e0 − λc(pc/patm)
ξ e0 reference critical 

void ratio 
λc, ζ CSL shape 
parameters 

Yield function f =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(s − pα) : (s − pα)

√
−

̅̅̅̅̅̅̅̅
2/3

√
pm m yield locus opening 

parameter 
Memory 

function 
fm =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(s − pαM) : (s − pαM)

√
−

̅̅̅̅̅̅̅̅
2/3

√
pmM  

Deviatoric 
plastic flow 

dep = 〈L〉R′

R′

= Bn − C[n2 − 1/3I]
n = (r − α)/(

̅̅̅̅̅̅̅̅
2/3

√
m)

B = 1 + 3(1 − c)/(2c)g(θ)cos3θ  
C = 3

̅̅̅̅̅̅̅̅
3/2

√
(1 − c)g(θ)/c  

g(θ) = 2c/[(1 + c) − (1 − c)cos3θ]
Volumetric 

plastic flow 
dεp

vol = 〈L〉D  

D =

[

A0exp(β〈b̃
M
d 〉/bref)

]
(
rd

θ − r
)
: n 

A0‘intrinsic’ dilatancy 
parameter 

rd
θ =

̅̅̅̅̅̅̅̅
2/3

√
g(θ)Mexp(ndΨ)n β dilatancy memory 

parameter 

b̃
M
d =

(

r̃d
θ − r̃M

)

: n nd void ratio 
dependence parameter 

bref =
(
rb

θ − rb
θ+π
)
: n  

rb
θ+π =

̅̅̅̅̅̅̅̅
2/3

√
g(θ+ π)Mexp(− nbΨ)(− n)

Yield surface 
evolution 

dα = (2/3)〈L〉h(rb
θ − r)

rb
θ =

̅̅̅̅̅̅̅̅
2/3

√
g(θ)Mexp(− nbΨ)n M critical stress ratio 

(triaxial compression) 

h =

b0

(r − rin) : n
exp[μ0

(
p

patm

)0.5
(

bM

bref

)2

]

nb void ratio 
dependence parameter 
c ompression-to- 
extension strength 
ratio 

b0 = gh0(1 − che)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pc/patm

√

bM =
(
rM − r

)
: n h0, ch hardening 

parameters 
Memory 

surface 
evolution 

dmM
=

̅̅̅̅̅̅̅̅
3/2

√
dαM : n −

(
mM/ζ

)
fshr〈− dεp

vol〉

μ0 ratcheting 
parameter  

dαM = (2/3)〈LM〉hM(r̃b
θ − r̃M

)

hM =
1
2
[

b0

(rM − rin) : n
+

̅̅̅̅
3
2

√
mMfshr〈− D〉

ζ
(
rb

θ − rM
)
: n

]

ζ memory surface 
shrinkage parameter  

Table 2 
Upgraded SANISAND-MS model parameters for Karlsruhe fine quartz sand and 
Toyoura sand.  

Model features Parameters quartz sand Toyoura sand 

Elasticity n 0.3 0.13 
ν 0.05 0.05 
k 330 680 
y 0.9 0.96 

Critical state M 1.27 1.25 
c 0.712 0.712 
λc 0.049 0.019 
e0 0.845 0.934 
ξ 0.27 0.7 

Yield surface m 0.01 0.01 
Plasticity modulus h0 1.54 1.008 

ch 1.01 0.968 
nb 1.95 1.1 

Dilatancy A0 1.02 1.3 
nd 1.05 4.5 

Memory surface μ0 260 260 
ζ 0.0005 0.0005 
β 1 1  
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the same simulation in Fig. 6, the upgraded SANISAND-MS predicts a 
non-vertical tangent to the elastic part of the unloading path (the solid 
line in Fig. 6) – which matches the experimental observations at least at 
the qualitative level. In Fig. 6, simulations for the upgraded SANISAND- 
MS model using the parameters for Toyoura sand are listed in Table 2. 
The original SANISAND-MS model parameters of Toyoura sand are the 
same as those listed in Liu et al. (2019). 

3.2. Effects of the inherent anisotropic parameter y 

The direction of the undrained stress path at the onset of shearing is 
extensively affected by the sand’s initial state. Reliable reproducing of 
sand undrained behavior requires the ability of the sand constitutive 
model to capture the feature. In the case of the Toyoura sand test result 

reported by Yang and Sze (2011), for instance, the undrained stress path 
moves directly in the direction of increasing effective stress p (see 
Fig. 7). Such behavior is not able to be captured by the original 
SANISAND-MS model. As mentioned, the original SANISAND-MS 
adopted isotropic elasticity and non-zero elastic range. The onset of 
the undrained shearing path predicted by SANISAND-MS always starts 
vertically. After that, the stress path biases towards the left (contractive) 
and then either continue to move towards the contractive side or starts 
moving towards the dilative side, depending on its relative state 
compared to the phase transformation state (see Fig. 7). The incorpo-
ration of the hyper-elastic law in the updated SANISAND-MS opens an 
opportunity to capture such behavior. Changing the direction of the 
onset stress path is achieved by varying the inherent fabric parameter y. 
For the example depicted in Fig. 7, adopting y = 0.9 provides the best fit 

Fig. 3. Calibration of model parameters against the triaxial monotonic drained findings conducted by Wichtmann (2005), and compared with Liu’s simulation results 
represented, (a) constant pin = 200 kPa, varying ein, (b) constant ein = 0.69, varying pin. 

Fig. 4. Illustration of (a) stress path and (b) loading sequence considered in the cyclic test.  

H. Lan et al.                                                                                                                                                                                                                                     



Computers and Geotechnics 159 (2023) 105428

7

between the updated SANISAND-MS model and the experimental result. 
The updated SANISAND-MS allows for adaptable control of the onset 

stress path direction (as shown by the different stress paths observed 
under various simulation conditions of y in Fig. 7). It is also worth noting 

that the updated SANISAND-MS can degrade to the original SANISAND- 
MS if y = 1 is used in conjunction with other equivalent settings for the 
elasticity parameters k and n. 

It should be noted that in the current version of the model formu-
lation, the inherent anisotropic feature is governed by the parameter y, 
without considering any evolution caused by the loading history. The 
anisotropy induced by the loading history can significantly affect the 
shearing behavior of the sand, as shown in Fig. 8(a). After being sub-
jected to deviatoric preloading, the undrained stress path evolves to-
wards the direction of increasing mean effective stress p (solid line). The 
evolution direction is opposite to the direction of the undrained stress 
path without deviatoric preloading (dashed line). Such distinct behavior 
cannot be captured through a single degree of anisotropy and principal 
directions of the fabric tensor (i.e., through a constant y). This is also 
demonstrated in Fig. 8 (b) and (c). No single y value can satisfactorily 
capture the stress paths under both conditions of with and without 
drained deviatoric preloading at the same time. One possible solution is 
to introduce a form of anisotropic elasto-plastic coupling (Golchin and 
Lashkari, 2014). 

3.3. Performance of upgraded SANISAND-MS model in drained triaxial 
cyclic tests 

The predictive capabilities of the upgraded SANISAND-MS model for 
drained cyclic loading are assessed by comparing the high-cycle triaxial 
test results reported by Wichtmann (2005) with the simulation results of 
the original SANISAND-MS model in this section. 

Fig. 9 presents the effects of the initial confining pressure pin on the 
sand ratcheting behaviour under the given load and soil conditions 
(ein = 0.684, ηave= 0.75, qampl/pin= 0.3). The experimental data reveal 
that the initial pin plays a minor role in the strain accumulation for the 
tested material and stress levels. However, the conclusion can be 
different for other test programs – see for instance Wichtmann et al., 
(2015). The upgraded SANISAND-MS model (Fig. 9(a)) performs simi-
larly to the original SANISAND-MS model (Fig. 9(b)) and agrees well 
with the experimental results (Wichtmann, 2005). 

Fig. 10 presents the influence of the initial void ratio on sand 
ratcheting behaviour. It indicates that the magnitude of the accumulated 
strain is greatly influenced by the initial void ratio. When subjected to 
the same load levels, loose sand accumulates larger strain at the same 
number of loading cycles. Such experimental evidence is reproduced by 
both the upgraded and the original SANISAND-MS models. 

One should notice that, even though the void ratio was eliminated 
from the elasticity law of the original SANISAND-MS model when 
calculating the elastic stiffness tensor, the performance of the upgraded 
SANISAND-MS model regarding cyclic drained responses of sand under 
a variety of void ratios is satisfactory – the dependence of sand accu-
mulated strain on the relative density is well captured by the upgraded 
model. 

In Fig. 11, the simulation results from the upgraded and original 
SANISAND-MS models for cyclic tests with qampl = 31 kPa, 60 kPa and 
80 kPa are presented and compared to the experimental results. Other 
loading and soil conditions are kept constant, as follows: pin = 200kPa,
ηave = 0.75 and ein = 0.72. The experimental and numerical results 
agree on the increased strain accumulation caused by increasing the 
amplitude of the cyclic stress. 

3.4. Model performance under the low amplitude cyclic loading 

Poblete et al. (2016) compared the experimental and simulation 
results of multidimensional cyclic loading tests, under low amplitude 
cyclic loading. In this section, low amplitude loading refers to stress 
states that do not exceed the yield surface. It concluded that the 
behaviour of sand is pseudo-elastic and that excessive irreversible strain 
should not be accumulated. From the constitutive modelling 

Fig. 5. Simulation curves of accumulated total strain varying with number of 
cycles for triaxial cyclic loading drained test compared with experiment 
(Wichtmann, 2005) and numerical results (Liu et al., 2019) following the set-
tings: ein = 0.702,qampl = 60 kPa, pin = 200 kPa, ηave = 0.75. 

Fig. 6. Undrained triaxial stress path simulated with the original and upgraded 
SANISAND-MS on Toyoura sand. The simulations were performed under the 
settings: pin = 3000 kPa, ein = 0.735. 

Fig. 7. Undrained monotonic triaxial test, the effect of the inherent anisotropic 
parameter y on the direction of stress path at the onset of shearing. 
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perspective, according to Duque et al. (2022), the artificial accumula-
tion caused by the incorporation of hypoelasticity in the constitutive 
models is not negligible. To check this issue, simulations are conducted 
on the low amplitude of the drained cyclic test by the upgraded and 
original SANISAND-MS models. The tests were performed using the 
same model parameters as indicated in section 3.3 with the initial 
conditions: pin = 200kPa, ein = 0.69. The number of cycles N = 104 was 
considered. The closed low amplitude cyclic stress path and loading 
sequences are demonstrated in Fig. 12(a)-(b), respectively. 

Under the condition of low amplitude cyclic loading, the responses of 
volumetric strain and deviatoric strain are presented in Fig. 13. As is 
shown in Fig. 13, the original SANISAND-MS model accumulates large 
values of deviatoric strain, while the upgraded SANISAND-MS manifests 
elasticity responses – which implies no irreversible strain is accumulated 
with the increase of cycles. Moreover, the deviatoric strain simulated by 
the original model shows an exponential increase with the increase of 
cycles. It can be predicted from the trends of the original model, if the 
number of cycles increases to a high level, a large residual irreversible 

Fig. 8. Undrained monotonic triaxial test with and without drained deviatoric preloading, (a) experiment on Karlsruhe fine sand conducted by Wichtmann (2016), 
(b) simulation results for the case without drained deviatoric preloading and (c) simulation results for the case with drained deviatoric preloading. 

Fig. 9. Influence of initial mean pressures pin on accumulated total strain curves compared with experimental data (Wichtmann, 2005), under the parameter settings: 
ein = 0.684, ηave = 0.75, qampl/pin = 0.3; (a) the upgraded SANISAND-MS model, (b) the original SANISAND-MS (Liu et al., 2019). 

Fig. 10. Influence of the initial void ratios ein on accumulated total strain curves compared with experimental data (Wichtmann, 2005), under the parameter settings: 
pin = 200 kPa, ηave = 0.75, qampl = 60 kPa; (a) the upgraded model, (b) the original model (Liu et al., 2019). 
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strain can be accumulated even when subjected to a very low amplitude. 
As a result, one should be careful about the finite element calculation 
results when applying the original model to simulate realistic boundary 
problems – for example, simulating the soil-structure interaction of 
offshore wind turbine foundations under high cyclic wind or wave loads. 
Because it is in compliance with the first law of thermodynamics, the 
upgraded model is more accurate in predicting sand accumulation and is 
suitable for simulating problems with high-cyclic loads. 

4. Conclusions 

To avoid large spurious accumulated strain under high cyclic loading 
conditions, the hyperelasticity law was incorporated into the 
SANISAND-MS model by replacing the hypoelasticity law in the original 
model formulation. The complete form of the derived nonlinear elas-
ticity functions enhanced by stress induced anisotropy is presented in 
this work. So as to ensure that the upgraded SANISAND-MS model can 

Fig. 11. Influence of the initial void ratios ein on accumulated total strain curves compared with experimental data (Wichtmann, 2005), under the parameter settings: 
pin = 200 kPa, ηave = 0.75, ein = 0.702; (a) the upgraded model, (b) the original model (Liu et al., 2019). 

Fig. 12. Closed stress path for low amplitude drained cyclic loading tests. (a) q ~ p stress path, (b) a part of loading sequences.  

Fig. 13. Low amplitude drained cyclic loading tests under the settings: pin = 200kPa, ein = 0.69. (a) volumetric strain ~ number of cycles curve, (b) deviatoric 
strain ~ number of cycles curve. 
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account for a thermodynamically consistent formulation for its revers-
ible response. The modification also aids in improving the model’s 
ability to capture the small strain nonlinearity and anisotropic features 
of sand, which are of great importance in geotechnical applications. The 
upgraded SANISAND-MS model was implemented in the OpenSees 
platform, and the model parameters were calibrated using the trial and 
error method against the drained monotonic triaxial experimental data 
of Karlsruhe fine quartz sand. Simulation results for the unloading 
response show that the volumetric-deviatoric coupling effect makes the 
upgraded model more accurate at capturing stress-induced anisotropy 
during the initial unloading stage. The upgraded SANISAND-MS model 
also improves the capability of simulating the small amplitude cyclic 
behaviour of sand. The simulation results for the cyclic tests agree well 
with the experimental results and the original SANISAND-MS, 
completing a successful evaluation. The model is now ready for use in 
real boundary value problems that involve cyclic events, and it can 
reproduce more realistic sand high-cyclic behaviour. 
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Géotechnique 1–16. 

Mital, U., Kawamoto, R., Andrade, J.E., 2020. Effect of fabric on shear wave velocity in 
granular soils. Acta Geotech. 15, 1189–1203. https://doi.org/10.1007/s11440-019- 
00766-1. 

Oh, K.-Y., Nam, W., Ryu, M.S., Kim, J.-Y., Epureanu, B.I., 2018. A review of foundations 
of offshore wind energy convertors: Current status and future perspectives. Renew. 
Sustain. Energy Rev. 88, 16–36. https://doi.org/10.1016/j.rser.2018.02.005. 

Poblete, M., Fuentes, W., Triantafyllidis, T.h., 2016. On the simulation of 
multidimensional cyclic loading with intergranular strain. Acta Geotech. 11, 
1263–1285. https://doi.org/10.1007/s11440-016-0492-2. 

Richart, F.E., Hall, J.R., Woods, R.D., 1970. Vibrations of soils and foundations. 
International series in theoretical and applied mechanics, Prentice Hall, Englewood 
Cliffs, N.J.  

Simo, J.C., Pister, K.S., 1984. Remarks on rate constitutive equations for finite 
deformation problems: computational implications. Comput. Methods Appl. Mech. 
Eng. 46, 201–215. https://doi.org/10.1016/0045-7825(84)90062-8. 

Taiebat, M., Dafalias, Y.F., 2008. SANISAND: Simple anisotropic sand plasticity model. 
Int. J. Numer. Anal. Meth. Geomech. 32, 915–948. https://doi.org/10.1002/ 
nag.651. 

Tasiopoulou, P., Gerolymos, 2016. Constitutive modeling of sand: Formulation of a new 
plasticity approach. Soil Dynamics Earthquake Eng., 82, 205-221. 

Verdugo, R., Ishihara, K., 1996. The steady state of sandy soils. Soils Found. 36, 81–91. 
Vermeer, P.A., 1982. A five-constant model unifying well-established concepts. In: 

Gudehus, G., Darve, F., Vardoulakis, G. (Eds.), Results of the international workshop 
on constitutive relations for soils. Balkema, Grenoble, pp. 175–197. 

Wichtmann, T., 2005. Explicit accumulation model for non-cohesive soils under cyclic 
loading. PhD thesis. Institut für Grundbau und Bodenmechanik, Bochum University, 
Bochum, Germany.  

Wichtmann, T., 2016. Soil behaviour under cyclic loading-experimental observations, 
constitutive description and applications. Th, Triantafyllidis.  

Wichtmann, T., Niemunis, A., Triantafyllidis, T., 2015. Improved simplified calibration 
procedure for a high-cycle accumulation model. Soil Dyn. Earthq. Eng. 70, 118–132. 
https://doi.org/10.1016/j.soildyn.2014.12.011. 

Xiao, H., Bruhns, O.T., Meyers, A., 2005. Objective stress rates, path-dependence 
properties and non-integrability problems. Acta Mechanica 176, 135–151. https:// 
doi.org/10.1007/s00707-005-0218-2. 

Yang, J., Sze, H.Y., 2011. Cyclic behaviour and resistance of saturated sand under non- 
symmetrical loading conditions. Géotechnique 61 (1), 59–73. 
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