2,713 research outputs found

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde

    An hourglass model for the flare of HST-1 in M87

    Full text link
    To explain the multi-wavelength light curves (from radio to X-ray) of HST-1 in the M87 jet, we propose an hourglass model that is a modified two-zone system of Tavecchio & Ghisellini (hereafter TG08): a slow hourglass-shaped or Laval nozzle-shaped layer connected by two revolving exponential surfaces surrounding a fast spine, through which plasma blobs flow. Based on the conservation of magnetic flux, the magnetic field changes along the axis of the hourglass. We adopt the result of TG08---the high-energy emission from GeV to TeV can be produced through inverse Compton by the two-zone system, and the photons from radio to X-ray are mainly radiated by the fast inner zone system. Here, we only discuss the light curves of the fast inner blob from radio to X-ray. When a compressible blob travels down the axis of the first bulb in the hourglass, because of magnetic flux conservation, its cross section experiences an adiabatic compression process, which results in particle acceleration and the brightening of HST-1. When the blob moves into the second bulb of the hourglass, because of magnetic flux conservation, the dimming of the knot occurs along with an adiabatic expansion of its cross section. A similar broken exponential function could fit the TeV peaks in M87, which may imply a correlation between the TeV flares of M87 and the light curves from radio to X-ray in HST-1. The Very Large Array (VLA) 22 GHz radio light curve of HST-1 verifies our prediction based on the model fit to the main peak of the VLA 15 GHz radio light curve.Comment: 14 pages, 2 figures, accepted for publication in A

    Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration

    Full text link
    Optical complex materials offer unprecedented opportunity to engineer fundamental band dispersion which enables novel optoelectronic functionality and devices. Exploration of photonic Dirac cone at the center of momentum space has inspired an exceptional characteristic of zero-index, which is similar to zero effective mass in fermionic Dirac systems. Such all-dielectric zero-index photonic crystals provide an in-plane mechanism such that the energy of the propagating waves can be well confined along the chip direction. A straightforward example is to achieve the anomalous focusing effect without longitudinal spherical aberration, when the size of zero-index lens is large enough. Here, we designed and fabricated a prototype of zero-refractive-index lens by comprising large-area silicon nanopillar array with plane-concave profile. Near-zero refractive index was quantitatively measured near 1.55 um through anomalous focusing effect, predictable by effective medium theory. The zero-index lens was also demonstrated to perform ultralow longitudinal spherical aberration. Such IC compatible device provides a new route to integrate all-silicon zero-index materials into optical communication, sensing, and modulation, and to study fundamental physics on the emergent fields of topological photonics and valley photonics.Comment: 14 pages, 4 figure

    Requirements-driven self-repairing against environmental failures

    Get PDF
    Self-repairing approaches have been proposed to alleviate the runtime requirements satisfaction problem by switching to appropriate alternative solutions according to the feedback monitored. However, little has been done formally on analyzing the relations between specific environmental failures and corresponding repairing decisions, making it a challenge to derive a set of alternative solutions to withstand possible environmental failures at runtime. To address these challenges, we propose a requirements-driven self-repairing approach against environmental failures, which combines both development-time and runtime techniques. At the development phase, in a stepwise manner, we formally analyze the issue of self-repairing against environmental failures with the support of the model checking technique, and then design a sufficient and necessary set of alternative solutions to withstand possible environmental failures. The runtime part is a runtime self-repairing mechanism that monitors the operating environment for unsatisfiable situations, and makes self-repairing decisions among alternative solutions in response to the detected environmental failures

    Division of labor, skill complementarity, and heterophily in socioeconomic networks

    Get PDF
    Constituents of complex systems interact with each other and self-organize to form complex networks. Empirical results show that the link formation process of many real networks follows either the global principle of popularity or the local principle of similarity or a tradeoff between the two. In particular, it has been shown that in social networks individuals exhibit significant homophily when choosing their collaborators. We demonstrate, however, that in populations in which there is a division of labor, skill complementarity is an important factor in the formation of socioeconomic networks and an individual's choice of collaborators is strongly affected by heterophily. We analyze 124 evolving virtual worlds of a popular "massively multiplayer online role-playing game" (MMORPG) in which people belong to three different professions and are allowed to work and interact with each other in a somewhat realistic manner. We find evidence of heterophily in the formation of collaboration networks, where people prefer to forge social ties with people who have professions different from their own. We then construct an economic model to quantify the heterophily by assuming that individuals in socioeconomic systems choose collaborators that are of maximum utility. The results of model calibration confirm the presence of heterophily. Both empirical analysis and model calibration show that the heterophilous feature is persistent along the evolution of virtual worlds. We also find that the degree of complementarity in virtual societies is positively correlated with their economic output. Our work sheds new light on the scientific research utility of virtual worlds for studying human behaviors in complex socioeconomic systems.Comment: 14 Latex pages + 3 figure
    corecore