108 research outputs found

    A Study on the Effect of IL-17A on Phenotypic Transformation of Fibroblasts in Bleomycin-Induced Pulmonary Fibrosis in Mice and Its Mechanism

    Get PDF
    Objective: In this study, lung fibroblasts were cultured and identified in mice lung fiber model with bleomycin. Under the induction of IL-17A, lung fibroblasts were gradually transformed into myofibroblasts in pulmonary fibrosis, and the specific induction effect of IL-17A in pulmonary fibrosis was analyzed, which could provide ideas for the prevention and treatment of clinical pulmonary fibrosis. Methods: To investigate the transcriptional expression of bleomycin-induced fractional pulmonary fibrosis in different pulmonary fibrosis processes. The 14-day mice model was taken as the research object, and the pulmonary fibrosis model was established by induction of myogenesis. After 14 days of modeling, lung tissue was removed, and after centrifugation and repeated adherent treatment, lung fibroblasts could be cultured at the origin. After three generations of culture, the morphological changes of lung fibroblasts could be observed under a microscope. Indirect immunofluorescence was used to establish the expression of vimentin, and IL-17 was used to stimulate primary cultured lung fibroblasts to detect the expression and specific localization of a-SMA in cells. Western blotting was used to stimulate the expression of lung fibroblast protein by IL-17A at different time points. Results: The typical characteristics of primary culture lung fibroblasts were obtained. After purification and culture, lung fibroblasts were obtained in morphology. The morphology of the 3rd and 4th generation cells was relatively uniform, showing long carboxyform. 1-2 nucleoli can be observed by microscope, which have distinct cell boundary and are lined up like fish schools. The results of indirect immunofluorescence showed that the vimentin staining in the third generation cells was positive, and the plasma was dark red. There were collagenous fibrous septa between the cells, which might make them develop into lung fibroblasts. A-SMA immunofluorescence results showed that in the absence of IL-17A induction, A-SMA signal was relatively weak in the lung fibroblasts of the control group and was in the cytoplasm, while after IL-17A induction, A-SMA signal was stronger in the lung fibroblasts of mice and the whole cells presented spindle structure. Western bletting showed that lung fibroblasts were stimulated by IL-17 in the 0h group. Compared with the 1h, 2h, and 4h groups, the expression of A-SMA in lung fibroblasts was significantly increased in the 1h, 2h, and 4h groups. The fibroblasts were very low in the 2h and 4h groups. There was no significant difference in the expression of AS MA signal. Compared with 0h, protein contents of p-IKB-a and p-p65 were higher in lung fibroblasts at 1h, 2h and 4h. Protein expressions of Acti, 1P6, IKB-a and P65 were different in lung fibroblasts, but there was no significant difference. However, there was no significant statistical difference in the expression of these proteins in lung fibroblasts at different times. Conclusion: By differential centrifugation and repeated adhesion, bleomycin-induced lung fibroblasts can be isolated and purified, and more cell production can be obtained. The staining vimentin was strongly positive after identification by indirect immunofluorescence. The stimulation of IL-17A could gradually transform non-fibroblasts into myofibroblasts and play an important role in pulmonary fibrosis. Therefore, through experimental studies, it was found that IL-17A stimulated F-kB signal and then increased the expression of P-IKB-a and P-P65 proteins, and transformed non-phosphorylated proteins into phosphorylated proteins, thus transforming lung fibroblasts into myofibroblasts and playing a role in pulmonary fibrosis

    Monitoring gas hydrate formation with magnetic resonance imaging in a metallic core holder

    Get PDF
    Methane hydrate deposits world-wide are promising sources of natural gas. Magnetic Resonance Imaging (MRI) has proven useful in previous studies of hydrate formation. In the present work, methane hydrate formation in a water saturated sand pack was investigated employing an MRI-compatible metallic core holder at low magnetic field with a suite of advanced MRI methods developed at the UNB MRI Centre. The new MRI methods are intended to permit observation and quantification of residual fluids in the pore space as hydrate forms. Hydrate formation occurred in the water-saturated sand at 1500 psi and 4 °C. The core holder has a maximum working pressure of 4000 psi between -28 and 80 °C. The heat-exchange jacket enclosing the core holder enabled very precise control of the sample temperature. A pure phase encode MRI technique, SPRITE, and a bulk T1-T2 MR method provided high quality measurements of pore fluid saturation. Rapid 1D SPRITE MRI measurements time resolved the disappearance of pore water and hence the growth of hydrate in the sand pack. 3D π-EPI images confirmed that the residual water was inhomogeneously distributed along the sand pack. Bulk T1-T2 measurements discriminated residual water from the pore gas during the hydrate formation. A recently published local T1-T2 method helped discriminate bulk gas from the residual fluids in the sample. Hydrate formation commenced within two hours of gas supply. Hydrate formed throughout the sand pack, but maximum hydrate was observed at the interface between the gas pressure head and the sand pack. This irregular pattern of hydrate formation became more uniform over 24 hours. The rate of hydrate formation was greatest in the first two hours of reaction. An SE-SPI T2 map showed the T2 distribution changed considerably in space and time as hydrate formation continued. Changes in the T2 distribution are interpreted as pore level changes in residual water content and environment

    CoSe2/Co nanoheteroparticles embedded in Co, Nco-doped carbon nanopolyhedra/nanotubes as anefficient oxygen bifunctional electrocatalyst for Zn–air batteries

    Get PDF
    Transition metal selenide-based materials have been demonstrated as promising electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), yet the actual design of a highly efficient and stable electro-catalyst based on these materials still remains a long and arduous challenge. Herein, a predesigned hybrid Zn/Co zeolitic imidazole framework was used to fabricate CoSe2/Co nanoheteroparticles embedded within hierarchically porous Co, N co-doped carbonnanopolyhedra/nanotubes (CoSe2/Co@NC-CNTs) through a facile approach involving controlled carbonization and selenization procedures. As expected, the optimized CoSe2/Co@NC-CNT-1 displayed outstanding electrocatalytic performance for the ORR and OER, with an onset potential of 0.95 V vs. RHE, a half-wave potential of 0.84 V vs. RHE for ORR, and a potential of 1.69 V vs. RHE for OER at 10 mA cm−2. It also exhibited excellent long-term stability and methanol resistance ability, which were superior to commercial IrO2 and the commercial 20 wt% Pt/C catalyst. Notably, the assembled Zn–air battery with CoSe2/Co@NC-CNT-1 showed a low charge–discharge voltage gap (0.696 V at 10 mA cm−2) and a high peak power density (100.28 mW cm−2) with long-term cycling stability. These superior performances can be ascribed to the synergistic effects of the highly active CoSe2/Co nanoheterostructure, hierarchically porous structure with a large surface area, high electrical conductivity and uniform doping of the Co and
    corecore