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Abstract
In this paper, the problem of exponential stability for neutral system with
time-varying delay and nonlinear perturbations is investigated. By using the
technology of model transformations, based on a linear matrix inequality (LMI) and a
generalized Lyapunov-Krasovskii function, a new criterion for exponential stability
with delay dependence is obtained. Due to a new integral inequality, the result is less
conservative. Finally, some numerical examples are presented to illustrate the
effectiveness of the method.
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1 Introduction
Time delay is frequently viewed as a source of instability, and it is encountered in various
engineering systems such as electrical circuits, chemical processes, networked control sys-
tems power systems, and other areas [, ]. Current efforts on the problem of the stability
of time-delay systems can be divided into two categories, namely delay-independent cri-
teria and delay-dependent criteria. A number of delay-independent sufficient conditions
for the asymptotic stability of delay systems have been presented by various researchers
(for example []). Also a few delay-dependent sufficient conditions have been shown in [,
]. So the problem of robust stability analysis for time-delay neutral systems is important
both in theory and in practice and is of interest to many researchers; see [, ] and the
references therein.
Recently, many researchers have paid a lot of attention to the problem of robust stability

for delay systemswith nonlinear uncertainties [, –], andmanymethods have been pro-
posed to deal with nonlinear uncertainties (see for example [, ]). For instance, by using
a descriptor model transformation and decomposition technique, some delay-dependent
stability criteria are obtained in []. In [] the stability conditions are developed by a
descriptor model transformation technique, and the nonlinear uncertainties are handled
by the S-procedure. However, these results are only concerned with asymptotic stability,
without providing any conditions for exponential stability and any information as regards
the decay rates.
As is well known, exponential stability converges faster than others, so the issue of ex-

ponential stability for some systems with time delay has received considerable attention
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in recent years [–]. For example, Liu [] has investigated the exponential stability of
a general power system. Kwon and Park discussed the exponential stability of uncertain
dynamic systems including state delay in [].
Considering those, many researchers have studied the exponential stability analysis for

neutral systems with time-varying and nonlinear perturbations [–]. Chen et al. []
presented a new criterion for exponential stability for uncertain neutral systems with non-
linear perturbations by employing an integral inequality. Ali [] investigated the exponen-
tial stability for a neutral delay differential system with nonlinear uncertainties by follow-
ing a generalized eigenvalue problem approach.
Based on the above, the exponential stability of neutral system with nonlinear uncer-

tainties is discussed in this paper, and by employing a Lyapunov-Krasovskii function, the
LMI method, and a new integral inequality, a sufficient condition for exponential stability
of the system is provided. Finally, some numerical examples are presented to illustrate the
effectiveness of the method.

2 System description and preliminary lemma
Consider the neutral system with delay and nonlinear uncertainties described by

⎧⎪⎨
⎪⎩
ẋ(t) = Ax(t) + Bx(t – d(t)) +Cẋ(t – d(t))

+Gf(t,x(t)) +Gf(t, ẋ(t)) +Gf(t,x(t – d(t))) +Gf(t, ẋ(t – d(t))),
x(t) = φ(t), ẋ(t) = ϕ(t), t ∈ [–d, ],

()

where x(t) ∈ Rn is the state vector, and A, B, C, G, G, G, and G ∈ Rn×n are known real
parameter matrices of appropriate dimensions. d(t) is for the time-varying continuous
functions satisfying d ≤ d(t) ≤ d,  ≤ ḋ(t) ≤ d̄, in which d, d, d and d̄ are positive
constants. φ(·) and ϕ(·) ∈ L[–d, ] are given continuous vector-valued initial functions.
f(t,x(t)), f(t,x(t – d(t))), f(t, ẋ(t)) and f(t, ẋ(t – d(t))) are nonlinear uncertainties and
satisfy the following conditions:

∥∥f(t,x(t))∥∥ ≤ α
∥∥x(t)∥∥,∥∥f(t, ẋ(t))∥∥ ≤ α
∥∥ẋ(t)∥∥,∥∥f(t,x(t – d(t)

))∥∥ ≤ α
∥∥x(t – d(t)

)∥∥,∥∥f(t, ẋ(t – d(t)
))∥∥ ≤ α

∥∥ẋ(t – d(t)
)∥∥, t > .

Let ẋ(t) = y(t), then system () is equivalent to the following:

⎧⎪⎨
⎪⎩
y(t) = Ax(t) + Bx(t – d(t)) +Cy(t – d(t))

+Gf(t,x(t)) +Gf(t, y(t)) +Gf(t,x(t – d(t))) +Gf(t, y(t – d(t))),
ẋ(t) = y(t), t ∈ [–d, ].

()

Definition  Consider the linear system (). If there exist two scalars ε >  and γ ≥  such
that

∥∥μ(t)
∥∥ ≤ γ e–εt‖�‖d, t ≥ ,
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and we let ‖�‖d = sup–d≤s≤

√
‖μ(s)‖ + ‖μ̇(s)‖, then system () is exponentially stable,

where ε is called the exponential convergence rate.

Before proceeding with the main results, several lemmas are necessary.

Lemma  For any symmetric positive-definite constant matrix R =
[ R R

∗ R

]
> , where

R,R,R ∈ Rn×n, and  < h(t) ≤ h, if there exists a vector function ẋ(·) : [,h] → Rn such
that the following integration is well defined, then we have

–h(t)
∫ t

t–h(t)
ηT (s)Rη(s)ds

≤
⎡
⎢⎣

x(t)
x(t – h(t))∫ t
t–h(t) x(s)ds

⎤
⎥⎦

T ⎡
⎢⎣
–R R –RT



∗ –R R

∗ ∗ –R

⎤
⎥⎦

⎡
⎢⎣

x(t)
x(t – h(t))∫ t
t–h(t) x(s)ds

⎤
⎥⎦ , ()

where η(t) = (xT (t) ẋT (t))T .

Proof

–h(t)
∫ t

t–h(t)
ηT (s)Rη(s)ds

≤ –
∫ t

t–h(t)

[
x(s)
ẋ(s)

]T

ds

[
R R

∗ R

]∫ t

t–h(t)

[
x(s)
ẋ(s)

]
ds

=

⎡
⎢⎣

x(t)
x(t – h(t))∫ t
t–h(t) x(s)ds

⎤
⎥⎦

T ⎡
⎢⎣
–R R –RT



∗ –R R

∗ ∗ –R

⎤
⎥⎦

⎡
⎢⎣

x(t)
x(t – h(t))∫ t
t–h(t) x(s)ds

⎤
⎥⎦ .

�

Remark  Lemma  will play a key role in the derivation of a less conservative delay-
dependent condition.

Lemma  [] Let U , V , W , and M be real matrices of appropriate dimensions with M
satisfying M =MT > , then

M +UVW +WTVTUT < ,

for all VVT ≤ I , if and only if there exists a scalar ε >  such that

M + ε–UUT + εWTW < .

3 Main results
Theorem For the prescribed scalar d > , system () is globally exponentially stable with
a convergence rate, if there exist positive-definite matrices P =

[ P 
P P

]
, PT

 = P, PT
 = P, for

positive-definite matrices Q, Q, Q, W =
[W W

∗ W

]
and real matrix Z =

[ Z Z
∗ Z

]
satisfying

http://www.advancesindifferenceequations.com/content/2014/1/44
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the following LMI:

	 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	 	  	 PT
 B PT

 C PT
 G PT

 G PT
 G PT

 G 	, 
∗ 	   PB PC PG PG PG PG  
∗ ∗ 	 	        	,
∗ ∗ ∗ 	       	, 	,
∗ ∗ ∗ ∗ 	       
∗ ∗ ∗ ∗ ∗ 	      
∗ ∗ ∗ ∗ ∗ ∗ –εI     
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI    
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 	, 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 	,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< , ()

where

	 = PT
 A +ATP +Q +Q +Q + dW + (d – d)Z –


d

W + β
 εI,

	 = P – PT
 +ATP + dW + (d – d)Z, 	 = –


d

W,

	 = P + dW + (d – d)Z + R + β
εI, 	, = –


d

WT
 ,

	 = –Q –


d – d
Z, 	 =


d – d

Z, 	, = –


d – d
ZT
 ,

	 = –Q –


d – d
Z –


d

W, 	, =

d

WT
 , 	, =


d – d

ZT
 ,

	 = –Q + β
εI, 	 = –( – d̄)R + β

εI,

	, = –

d

W, 	, = –


d – d
Z.

Proof Let us consider the Lyapunov functional candidate to be

V (t) = V(t) +V(t) +V(t) +V(t) +V(t) +V(t), ()

where

V(t) =
[
xT (t) yT (t)

][
I 
 

][
P 
P P

][
x(t)
y(t)

]
,

V(t) =
∫ t

t–d
xT (s)Qx(s)ds, V(t) =

∫ t

t–d
xT (s)Qx(s)ds,

V(t) =
∫ 

–d

∫ t

t+β

ηT (s)Wη(s)dsdβ +
∫ –d

–d

∫ t

t+β

ηT (s)Zη(s)dsdβ ,

V(t) =
∫ 

–d
F(t, s)ds, with F(t, s) = sup

s≤ξ≤
xT (t + ξ )Qx(t + ξ ),

V(t) =
∫ t

t–d(t)
yT (s)Ry(s)ds, η(t) =

(
xT (t) yT (t)

)T .
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Then the time derivative of V (xt) along the solution of system () gives

V̇ (t) = V̇(t) + V̇(t) + V̇(t) + V̇(t) + V̇(t) + V̇(t),

V̇(t) = 
[
xT (t) yT (t)

][
P PT



 P

][
ẋ(t)


]

= 
[
xT (t) yT (t)

][
P PT



 P

]⎡
⎢⎢⎢⎣

ẋ(t)
Ax(t) + Bx(t – d(t)) – y(t)

+Cy(t – d(t)) +Gf(t,x(t)) +Gf(t, y(t))
+Gf(t,x(t – d(t))) +Gf(t, y(t – d(t)))

⎤
⎥⎥⎥⎦ ,

V̇(t) = xT (t)Qx(t) – xT (t – d)Qx(t – d),

V̇(t) = xT (t)Qx(t) – xT (t – d)Qx(t – d),

V̇(t) =
∫ 

–d

[
x(s)
y(s)

]T [
W W

∗ W

][
x(s)
y(s)

]
ds –

∫ t

t–d

[
x(s)
y(s)

]T [
W W

∗ W

][
x(s)
y(s)

]
ds

+
∫ –d

–d

[
x(s)
y(s)

]T [
Z Z

∗ Z

][
x(s)
y(s)

]
ds –

∫ t–d

t–d

[
x(s)
y(s)

]T [
Z Z

∗ Z

][
x(s)
y(s)

]
ds.

By Lemma , we get

V̇(t) ≤ h

[
x(t)
y(t)

]T [
W W

∗ W

][
x(t)
y(t)

]
+ (h – h)

[
x(t)
y(t)

]T [
Z Z

∗ Z

][
x(t)
y(t)

]

+

h

⎡
⎢⎣

x(t)
x(t – h)∫ t
t–h

x(s)ds

⎤
⎥⎦

T ⎡
⎢⎣
–W W –WT



∗ –W W

∗ ∗ –W

⎤
⎥⎦

⎡
⎢⎣

x(t)
x(t – h)∫ t
t–h

x(s)ds

⎤
⎥⎦

+


h – h

⎡
⎢⎣

x(t – h)
x(t – h)∫ t–h
t–h

x(s)ds

⎤
⎥⎦

T ⎡
⎢⎣
–Z Z –ZT



∗ –Z Z

∗ ∗ –Z

⎤
⎥⎦

⎡
⎢⎣

x(t – h)
x(t – h)∫ t–h
t–h

x(s)ds

⎤
⎥⎦ ,

V̇(t) ≤ xT (t)Qx(t) – xT
(
t – d(t)

)
Qx

(
t – d(t)

)
,

V̇(t) ≤ yT (t)Ry(t) – yT
(
t – d(t)

)
Ry

(
t – d(t)

)
( – d̄).

Since

ε
[
β
 x

T (t)x(t) – f T
(
t,x(t)

)
f
(
t,x(t)

)] ≥ ,

ε
[
β
y

T (t)y(t) – f T
(
t, y(t)

)
f

(
t, y(t)

)] ≥ ,

ε
[
β
x

T(
t – d(t)

)
x
(
t – d(t)

)
– f T

(
t,x

(
t – d(t)

))
f

(
t,x

(
t – d(t)

))] ≥ ,

ε
[
β
y

T(
t – d(t)

)
y
(
t – d(t)

)
– f T

(
t, y

(
t – d(t)

))
f

(
t, y

(
t – d(t)

))] ≥ ,

()

by Lemma , we get

–h
∫ t

t–h(t)
ẋT (s)Wẋ(s)ds≤ z(t)T

[
–W W
∗ –W

]
z(t),

where z(t) = [xT (t) xT (t – h(t))]T .

http://www.advancesindifferenceequations.com/content/2014/1/44
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So

V̇ (t) ≤ xT (t)
(
PT
 A +ATP +Q +Q +Q + dW + (d – d)Z –


d

W + β
 εI

)
x(t)

+ xT (t)
(
P – PT

 +ATP + dW + (d – d)Z
)
y(t)

+ xT (t)
(
–

d

WT


)∫ t

t–d
x(s)ds + xT (t)

(
–

d

W

)
x(t – d)

+ xT (t)
(
PT
 B

)
x
(
t – d(t)

)
+ xT (t)

(
PT
 C

)
y
(
t – d(t)

)
+ xT (t)

(
PT
 G

)
f
(
t,x(t)

)
+ xT (t)

(
PT
 G

)
f

(
t, y(t)

)
+ xT (t)

(
PT
 G

)
f

(
t,x

(
t – d(t)

))
+ xT (t)

(
PT
 G

)
f

(
t, y

(
t – d(t)

))
+ yT (t)

(
P + dW + (d – d)Z + R + β

εI
)
y(t) + yT (t)(PB)x

(
t – d(t)

)
+ yT (t)(PC)y

(
t – d(t)

)
+ yT (t)(PG)f

(
t,x(t)

)
+ yT (t)(PG)f

(
t, y(t)

)
+ yT (t)(PG)f

(
t,x

(
t – d(t)

))
+ yT (t)(PG)f

(
t, y

(
t – d(t)

))
+ xT (t – d)

(
–Q –


d – d

Z

)
x(t – d) + xT (t – d)

(


d – d
Z

)
x(t – d)

+ xT (t – d)
(
–


d – d

ZT


)∫ t–d

t–d
x(s)ds

+ xT (t – d)
(
–Q –


d – d

Z –

d

W

)
x(t – d)

+ xT (t – d)
(


d

WT


)∫ t

t–d
x(s)ds + xT (t – d)

(


d – d
ZT


)∫ t–d

t–d
x(s)ds

+ xT
(
t – d(t)

)(
–Q + β

εI
)
x
(
t – d(t)

)
+ yT

(
t – d(t)

)(
–( – d̄)R + β

εI
)
y
(
t – d(t)

)
+ f T

(
t,x(t)

)
(–εI)f

(
t,x(t)

)
+ f T

(
t, y(t)

)
(–εI)f

(
t, y(t)

)
+ f T

(
t,x

(
t – d(t)

))
(–εI)f

(
t,x

(
t – d(t)

))
+ f T

(
t, y

(
t – d(t)

))
(–εI)f

(
t, y

(
t – d(t)

))
+

∫ t

t–d
xT (s)ds

(
–

d

W

)∫ t

t–d
x(s)ds

+
∫ t–d

t–d
xT (s)ds

(
–


d – d

Z

)∫ t–d

t–d
x(s)ds

= ξT (t)	ξ (t).

Define the extended vector

ξ (t) =
[
xT (t), yT (t),xT (t – d),xT (t – d),xT

(
t – d(t)

)
, yT

(
t – d(t)

)
, f T

(
t,x(t)

)
,

f T
(
t, y(t)

)
, f T

(
t,x

(
t – d(t)

))
, f T

(
t, y

(
t – d(t)

))
,
∫ t

t–d
x(s)ds,

∫ t–d

t–d
x(s)ds

]T

.

If	 < , that is to say, V̇ (t) < , then based on the Lyapunovmethod, system () is asymp-
totically stable, that is to say, system () is asymptotically stable.

http://www.advancesindifferenceequations.com/content/2014/1/44
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Furthermore, we prove the exponential stability of the neutral system ().
Now, it is easy to see from () that there exists a scalar λ >  such that for any t, V̇ (t) ≤

–λ‖�‖d .
Moreover, by the definition of a Lyapunov functional, there exist positive scalars λ, λ,

λ, and λ such that for any t we have the following inequality:

V (t) ≤ λ
∥∥x(t)∥∥ + λ

∫ t

t–d

∥∥x(s)∥∥ ds

+ λ

∫ t

t–d

∥∥ẋ(s)∥∥ ds + λ

∫ t

t–d

∥∥x(s – d)
∥∥ ds. ()

To prove the exponential stability of system (), we define a new function by W (t) =
eεtV (t), where the scalar ε > . Then, we find that for any t,

W (t) –W () = eεtV (t) –V ()

=
∫ t



[
eεsV̇ (s) + εeεsV (s)

]
ds≤

∫ d

t
eεs[εV (s) – V̇ (s)

]
ds

≤
∫ t


eεθ

[
ελ

∥∥x(θ )∥∥ + ελ

∫ θ

θ–d

∥∥x(s)∥∥ ds + ελ

∫ θ

θ–d

∥∥ẋ(s)∥∥ ds

+ ελ

∫ θ

θ–d

∥∥x(s – d)
∥∥ ds – λ‖�‖d

]
dθ . ()

By interchanging the integration sequence, we get

∫ t


eεθ dθ

∫ θ

θ–d

∥∥x(s)∥∥ ds ≤ deεd
∫ t


eεθ

∥∥x(θ )∥∥ dθ + d
e

εd‖ϕ‖,
∫ t


eεθ dθ

∫ θ

θ–d

∥∥ẋ(s)∥∥ ds ≤ deεd
∫ t


eεθ

∥∥ẋ(θ )∥∥ dθ + d
e

εd‖φ‖, ()

∫ t


eεθ dθ

∫ θ

θ–d

∥∥x(s – d)
∥∥ ds≤ deεd

∫ t


eεθ

∥∥x(θ )∥∥ dθ + d
e

εd‖ϕ‖.

Let ε >  be small enough such that ελ + εdeεdλ + εdeεdλ – λ ≤ .
Then, substituting () into () shows that there exists a scalar β >  such that, for any t,

V (t) ≤ βe–εt‖�‖d. ()

It can be seen that

V (t) ≥
[
x(t)
y(t)

]T [
Ir 
 

][
P 
P P

][
x(t)
y(t)

]
= xT (t)Px(t)≥ λmin(P)

∥∥x(t)∥∥. ()

Substituting () into () yields ‖x(t)‖ ≤
√

β

λmin(P)
e–εt‖�‖d for any t.

From Definition , x(t) has exponential stability, that is, system () has exponential sta-
bility. This completes the proof. �

http://www.advancesindifferenceequations.com/content/2014/1/44
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Remark  When G = G = G = G = , system () is reduced to the traditional neutral
system with time delay. However, for the class of neutral systems one has achieved some
results in [, ] and the references therein.

Remark  When G =  and G =G =G = I , system () is converted into the system in
Ali []. However, our system has more the nature of universality.

Remark  When C =  and G = , system () reduces to the traditional power system
with nonlinear perturbations (). However, for the general power system with nonlinear
perturbations one has achieved some results in [, –, , ]. We have

{
ẋ(t) = Ax(t) + Bx(t – d(t)) +Gf(t,x(t)) +Gf(t, ẋ(t)) +Gf(t,x(t – d(t))),
x(t) = φ(t), ẋ(t) = ϕ(t), t ∈ [–d, ].

()

Corollary  For prescribed scalar d > , system () is exponentially admissible with con-
vergence rate ε, if there exist positive-definite matrices P =

[ P 
P P

]
and positive-definite

symmetric matrices Q, Q, Q, W =
[W W

∗ W

]
and a real matrix Z =

[ Z Z
∗ Z

]
satisfying the

following LMI:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X  X PT
 B PT

 G PT
 G PT

 G X, 
∗ X   PB PG PG PG  
∗ ∗ X X      X,

∗ ∗ ∗ X     X, X,

∗ ∗ ∗ ∗ X     
∗ ∗ ∗ ∗ ∗ –εI    
∗ ∗ ∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X, 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< ,

where

X = PT
 A +ATP +Q +Q +Q + dW + (d – d)Z –


d

W + β
 εI,

X = P – PT
 +ATP + dW + (d – d)Z,

X = –

d

W, X, = –

d

WT
 ,

X = P + dW + (d – d)Z + β
εI, X =


d – d

Z,

X = –Q –


d – d
Z, X, = –


d – d

ZT
 , X, =


d

WT
 ,

X = –Q –


d – d
Z –


d

W, X, =


d – d
ZT
 ,

X = –Q + β
εI, X, = –


d

W, X, = –


d – d
Z.
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Table 1 Maximum allowable time-delay upper bound for τ (t) = h(t)

Result Upper bounds
of delays

[1] 1.3955
[2] 0.7400
[16] 1.6100
[19] 1.7200
[17] 2.6000
Ours 3.1500

Table 2 Maximum allowable time-delay upper bound for d2

Time-delay conditions [20] [21] [17] [18] [16] Ours

α = 0, β = 0.1, d̄ = 0 0.6811 1.3279 2.7420 3.7440 d2 > 0 d2 > 0
α = 0, β = 0.1, d̄ = 0.5 0.5467 0.6743 1.1420 1.4710 1.5774 1.7426
α = 0.1, β = 0.1, d̄ = 0 0.6129 1.2503 1.8750 2.4430 d2 > 0 d2 > 0
α = 0.1, β = 0.1, d̄ = 0.5 0.4950 0.5716 1.0090 1.2990 1.4196 2.3259

4 Numerical examples
Example  Consider the following neutral time-delay system []:

ẋ(t) = Ax(t) + Bx
(
t – d(t)

)
+Cẋ

(
t – d(t)

)
+Gf

(
t,x(t)

)
+Gf

(
t, ẋ(t)

)
+Gf

(
t,x

(
t – d(t)

))
+Gf

(
t, ẋ

(
t – d(t)

))
,

with A =
[ – 

 –

]
, B =

[  .
. 

]
, C =

[ . 
 .

]
, G =G =G = I ,

G = , α = ., α = , α = ., ḋ(t) ≤ d̄ = ..

Using the Matlab LMI Toolbox and Theorem , we obtain maximum allowable upper
bounds of d, which are listed in Table . Table  describes maximum allowable upper
bounds of delays that guarantee the exponential stability of system (). It can be seen that
our stability condition is less conservative than the results discussed in [, , ].

Example  Consider the asymptotic stability with ε =  of a system with time delay and
nonlinear uncertainties in [–, , ]:

ẋ(t) = Ax(t) + Bx
(
t – d(t)

)
+Gf

(
t,x(t)

)
+Gf

(
t, ẋ(t)

)
+Gf

(
t,x

(
t – d(t)

))
,

where

A =

[
–. .
–. –

]
, B =

[
–. .
– –.

]
.

By applying our criteria and using theMatlab LMIToolbox, we have the comparative result
listed in Table . From Table , we can see that our results are much less conservative than
those in [–, , ].

5 Conclusion
The exponentially stability of a neutral system with nonlinear perturbations has been
solved in terms of the LMI approach. Using the Lyapunov-Krasovskii functional method,

http://www.advancesindifferenceequations.com/content/2014/1/44
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the model transformation technique, and a new integral inequality, a new criterion for
the exponential stability of systems is given. The criterion is presented in terms of linear
matrix inequalities, which can easily be solved by the Matlab Toolbox and will have wide
application in practical engineering. Finally, numerical examples are presented to illustrate
the effectiveness of the method.
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