1,329 research outputs found

    Experimental quantum key distribution with active phase randomization

    Get PDF
    Phase randomization is an important assumption made in many security proofs of practical quantum key distribution (QKD) systems. Here, we present the first experimental demonstration of QKD with reliable active phase randomization. One key contribution is a polarization-insensitive phase modulator, which we added to a commercial phase-coding QKD system to randomize the global phase of each bit. We also proposed a simple but useful method to verify experimentally that the phase is indeed randomized. Our result shows very low QBER (<1%). We expect this active phase randomization process to be a standard part in future QKD set-ups due to its significance and feasibility.Comment: 3 pages, 3 figures, RevTE

    Adaptive Sparse Structure Development with Pruning and Regeneration for Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) are more biologically plausible and computationally efficient. Therefore, SNNs have the natural advantage of drawing the sparse structural plasticity of brain development to alleviate the energy problems of deep neural networks caused by their complex and fixed structures. However, previous SNNs compression works are lack of in-depth inspiration from the brain development plasticity mechanism. This paper proposed a novel method for the adaptive structural development of SNN (SD-SNN), introducing dendritic spine plasticity-based synaptic constraint, neuronal pruning and synaptic regeneration. We found that synaptic constraint and neuronal pruning can detect and remove a large amount of redundancy in SNNs, coupled with synaptic regeneration can effectively prevent and repair over-pruning. Moreover, inspired by the neurotrophic hypothesis, neuronal pruning rate and synaptic regeneration rate were adaptively adjusted during the learning-while-pruning process, which eventually led to the structural stability of SNNs. Experimental results on spatial (MNIST, CIFAR-10) and temporal neuromorphic (N-MNIST, DVS-Gesture) datasets demonstrate that our method can flexibly learn appropriate compression rate for various tasks and effectively achieve superior performance while massively reducing the network energy consumption. Specifically, for the spatial MNIST dataset, our SD-SNN achieves 99.51\% accuracy at the pruning rate 49.83\%, which has a 0.05\% accuracy improvement compared to the baseline without compression. For the neuromorphic DVS-Gesture dataset, 98.20\% accuracy with 1.09\% improvement is achieved by our method when the compression rate reaches 55.50\%

    The Application of Carbon Footprint Analysis in Hunan Province

    Get PDF
    Based on interpreting carbon footprint’s definition and its effecting factors, making positive analyses by using the data of cities in Hunan Province from 2005 to 2009, this paper constructs the calculating model of carbon footprint and analyses the relationship between carbon footprint and population, economy development level, industrial structure and energy structure. Meanwhile, on the basis of above analyses, this paper puts forward effective ways to advance the low-carbon development of Hunan Province from four aspects

    Applicability of the Friedberg-Lee-Zhao method

    Full text link
    Friedberg, Lee and Zhao proposed a method for effectively evaluating the eigenenergies and eigen wavefunctions of quantum systems. In this work, we study several special cases to investigate applicability of the method. Concretely, we calculate the ground-state eigenenergy of the Hellmann potential as well as the Cornell potential, and also evaluate the energies of the systems where linear term is added to the Coulomb and harmonic oscillator potentials as a perturbation. The results obtained in this method have a surprising agreement with the traditional method or the numerical results. Since the results in this method have obvious analyticity compared to that in other methods, and because of the simplicity for calculations this method can be applied to solving the Schr\"{o}dinger equation and provides us better understanding of the physical essence of the concerned systems. But meanwhile applications of the FLZ method are restricted at present, especially for certain potential forms, but due to its obvious advantages, it should be further developed.Comment: 14 pages,no figure

    Degree correlation effect of bipartite network on personalized recommendation

    Get PDF
    In this paper, by introducing a new user similarity index base on the diffusion process, we propose a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the proposed algorithm, the degree correlation between users and objects is taken into account and embedded into the similarity index by a tunable parameter. The numerical simulation on a benchmark data set shows that the algorithmic accuracy of the MCF, measured by the average ranking score, is further improved by 18.19% in the optimal case. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that the presented algorithm can provide more diverse and less popular recommendations, for example, when the recommendation list contains 10 objects, the diversity, measured by the hamming distance, is improved by 21.90%.Comment: 9 pages, 3 figure

    Multi-scale Evolutionary Neural Architecture Search for Deep Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have received considerable attention not only for their superiority in energy efficient with discrete signal processing, but also for their natural suitability to integrate multi-scale biological plasticity. However, most SNNs directly adopt the structure of the well-established DNN, rarely automatically design Neural Architecture Search (NAS) for SNNs. The neural motifs topology, modular regional structure and global cross-brain region connection of the human brain are the product of natural evolution and can serve as a perfect reference for designing brain-inspired SNN architecture. In this paper, we propose a Multi-Scale Evolutionary Neural Architecture Search (MSE-NAS) for SNN, simultaneously considering micro-, meso- and macro-scale brain topologies as the evolutionary search space. MSE-NAS evolves individual neuron operation, self-organized integration of multiple circuit motifs, and global connectivity across motifs through a brain-inspired indirect evaluation function, Representational Dissimilarity Matrices (RDMs). This training-free fitness function could greatly reduce computational consumption and NAS's time, and its task-independent property enables the searched SNNs to exhibit excellent transferbility and scalability. Extensive experiments demonstrate that the proposed algorithm achieves state-of-the-art (SOTA) performance with shorter simulation steps on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS and DVS128-Gesture). The thorough analysis also illustrates the significant performance improvement and consistent bio-interpretability deriving from the topological evolution at different scales and the RDMs fitness function
    • …
    corecore