87,291 research outputs found

    Diffusion induced decoherence of stored optical vortices

    Full text link
    We study the coherence properties of optical vortices stored in atomic ensembles. In the presence of thermal diffusion, the topological nature of stored optical vortices is found not to guarantee slow decoherence. Instead the stored vortex state has decoherence surprisingly larger than the stored Gaussian mode. Generally, the less phase gradient, the more robust for stored coherence against diffusion. Furthermore, calculation of coherence factor shows that the center of stored vortex becomes completely incoherent once diffusion begins and, when reading laser is applied, the optical intensity at the center of the vortex becomes nonzero. Its implication for quantum information is discussed. Comparison of classical diffusion and quantum diffusion is also presented.Comment: 5 pages, 2 figure

    Fast moving of a population of robots through a complex scenario

    Get PDF
    Swarm robotics consists in using a large number of coordinated autonomous robots, or agents, to accomplish one or more tasks, using local and/or global rules. Individual and collective objectives can be designed for each robot of the swarm. Generally, the agents' interactions exhibit a high degree of complexity that makes it impossible to skip nonlinearities in the model. In this paper, is implemented both a collective interaction using a modified Vicsek model where each agent follows a local group velocity and the individual interaction concerning internal and external obstacle avoidance. The proposed strategies are tested for the migration of a unicycle robot swarm in an unknown environment, where the effectiveness and the migration time are analyzed. To this aim, a new optimal control method for nonlinear dynamical systems and cost functions, named Feedback Local Optimality Principle - FLOP, is applied

    WxN1–x alloys as diffusion barriers between Al and Si

    Get PDF
    Reactively sputtered tungsten nitride (WxN1–x) layers are investigated as diffusion barriers between Al overlayers and Si shallow n + -p junctions. Both amorphous W80 N20 and polycrystalline W60 N40 films were found to be very effective in preserving the integrity of the n + -p diodes for 30-min vacuum annealing up to 575 °C. Diode failure at higher temperatures is caused by localized penetration of Al into through the WxN1–x barriers. The effectiveness of the barrier decreases for polycrystalline W90 N10 and is worse for pure W

    Data Management Systems (DMS): Complex data types study. Volume 1: Appendices A-B. Volume 2: Appendices C1-C5. Volume 3: Appendices D1-D3 and E

    Get PDF
    Two categories were chosen for study: the issue of using a preprocessor on Ada code of Application Programs which would interface with the Run-Time Object Data Base Standard Services (RODB STSV), the intent was to catch and correct any mis-registration errors of the program coder between the user declared Objects, their types, their addresses, and the corresponding RODB definitions; and RODB STSV Performance Issues and Identification of Problems with the planned methods for accessing Primitive Object Attributes, this included the study of an alternate storage scheme to the 'store objects by attribute' scheme in the current design of the RODB. The study resulted in essentially three separate documents, an interpretation of the system requirements, an assessment of the preliminary design, and a detailing of the components of a detailed design

    High electrical conductance enhancement in Au-nanoparticle decorated sparse single-wall carbon nanotube networks

    Get PDF
    The authors thank the Engineering and Physical Science Research Council for funding through the Imperial College London/Queen Mary Unive

    Finding the Origin of the Pioneer Anomaly

    Full text link
    Analysis of radio-metric tracking data from the Pioneer 10/11 spacecraft at distances between 20 - 70 astronomical units (AU) from the Sun has consistently indicated the presence of an anomalous, small, constant Doppler frequency drift. The drift can be interpreted as being due to a constant acceleration of a_P= (8.74 \pm 1.33) x 10^{-8} cm/s^2 directed towards the Sun. Although it is suspected that there is a systematic origin to the effect, none has been found. As a result, the nature of this anomaly has become of growing interest. Here we present a concept for a deep-space experiment that will reveal the origin of the discovered anomaly and also will characterize its properties to an accuracy of at least two orders of magnitude below the anomaly's size. The proposed mission will not only provide a significant accuracy improvement in the search for small anomalous accelerations, it will also determine if the anomaly is due to some internal systematic or has an external origin. A number of critical requirements and design considerations for the mission are outlined and addressed. If only already existing technologies were used, the mission could be flown as early as 2010.Comment: 21 SS pages, 4+1 figures. final changes for publicatio

    Growth control of GaAs nanowires using pulsed laser deposition with arsenic over pressure

    Full text link
    Using pulsed laser ablation with arsenic over pressure, the growth conditions for GaAs nanowires have been systematically investigated and optimized. Arsenic over pressure with As2_2 molecules was introduced to the system by thermal decomposition of polycrystalline GaAs to control the stoichiometry and shape of the nanowires during growth. GaAs nanowires exhibit a variety of geometries under varying arsenic over pressure, which can be understood by different growth processes via vapor-liquid-solid mechanism. Single-crystal GaAs nanowires with uniform diameter, lengths over 20 μ\mum, and thin surface oxide layer were obtained and can potentially be used for further electronic characterization
    • …
    corecore