117,167 research outputs found

    Self-consistent models of triaxial galaxies in MOND gravity

    Full text link
    The Bekenstein-Milgrom gravity theory with a modified Poisson equation is tested here for the existence of triaxial equilibrium solutions. Using the non-negative least square method, we show that self-consistent triaxial galaxies exist for baryonic models with a mild density cusp ÏâˆŒÎŁr\rho \sim {\Sigma \over r}. Self-consistency is achieved for a wide range of central concentrations, ÎŁâˆŒ10−1000M⊙pc−2\Sigma \sim 10-1000\mathrm{M_{\odot}pc^{-2}}, representing low-to-high surface brightness galaxies. Our results demonstrate for the first time that the orbit superposition technique is fruitful for constructing galaxy models beyond Newtonian gravity, and triaxial cuspy galaxies might exist without the help of Cold dark Matter.Comment: 19 pages, 1 table, 7 figures, Accepted for publication in Ap

    Diffusion induced decoherence of stored optical vortices

    Full text link
    We study the coherence properties of optical vortices stored in atomic ensembles. In the presence of thermal diffusion, the topological nature of stored optical vortices is found not to guarantee slow decoherence. Instead the stored vortex state has decoherence surprisingly larger than the stored Gaussian mode. Generally, the less phase gradient, the more robust for stored coherence against diffusion. Furthermore, calculation of coherence factor shows that the center of stored vortex becomes completely incoherent once diffusion begins and, when reading laser is applied, the optical intensity at the center of the vortex becomes nonzero. Its implication for quantum information is discussed. Comparison of classical diffusion and quantum diffusion is also presented.Comment: 5 pages, 2 figure

    Averages of shifted convolutions of d3(n)d_3(n)

    Get PDF
    We investigate the first and second moments of shifted convolutions of the generalised divisor function d3(n)d_3(n).Comment: 22 page

    Electric Field Effect in Diluted Magnetic Insulator Anatase Co:TiO2

    Get PDF
    An external electric field induced reversible modulation of room temperature magnetic moment is achieved in an epitaxial and insulating thin film of dilutely cobalt-doped anatase TiO2. This first demonstration of electric field effect in any oxide based diluted ferromagnet is realized in a high quality epitaxial heterostructure of PbZr0.2Ti0.8O3/Co:TiO2/SrRuO3 grown on (001) LaAlO3. The observed effect, which is about 15% in strength in a given heterostructure, can be modulated over several cycles. Possible mechanisms for electric field induced modulation of insulating ferromagnetism are discussed.Comment: 14 pages, 4 figure

    Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of Nuclear factor (erythroid-derived 2)-like 2

    Get PDF
    Perinatal hypoxic ischaemic encephalopathy (HIE) has a high mortality rate with neuropsychological impairment. This study investigated the neuroprotective effects of argon against neonatal hypoxic-ischaemic brain injury. In vitro cortical neuronal cell cultures derived from rat foetuses were subjected to an oxygen and glucose deprivation (OGD) challenge for 90 minutes and then exposed to 70% argon or nitrogen with 5% carbon dioxide and balanced with oxygen for 2 hours. In vivo, seven-day-old rats were subjected to unilateral common carotid artery ligation followed by hypoxic (8% oxygen balanced with nitrogen) insult for 90 minutes. They were exposed to 70% argon or nitrogen balanced with oxygen for 2 hours. In vitro, argon treatment of cortical neuronal cultures resulted in a significant increase of p-mTOR and Nuclear factor (erythroid-derived 2)-like 2(Nrf2) and protection against OGD challenge. Inhibition of m-TOR through Rapamycin or Nrf2 through siRNA abolished argon-mediated cyto-protection. In vivo, argon exposure significantly enhanced Nrf2 and its down-stream effector NAD(P)H Dehydrogenase, Quinone 1(NQO1) and superoxide dismutase 1(SOD1). Oxidative stress, neuroinflammation and neuronal cell death were significantly decreased and brain infarction was markedly reduced. Blocking PI-3K through wortmannin or ERK1/2 through U0126 attenuated argon-mediated neuroprotection. These data provide a new molecular mechanism for the potential application of Argon as a neuroprotectant in HIE

    The GEMS Approach to Stationary Motions in the Spherically Symmetric Spacetimes

    Full text link
    We generalize the work of Deser and Levin on the unified description of Hawking radiation and Unruh effect to general stationary motions in spherically symmetric black holes. We have also matched the chemical potential term of the thermal spectrum of the two sides for uncharged black holes.Comment: Latex file, 12 pages, no figure; v2: typos fixed; v3: minor corrections, final version published in JHE

    Thermomechanical Characterization And Modeling For TSV Structures

    Get PDF
    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente

    Fast moving of a population of robots through a complex scenario

    Get PDF
    Swarm robotics consists in using a large number of coordinated autonomous robots, or agents, to accomplish one or more tasks, using local and/or global rules. Individual and collective objectives can be designed for each robot of the swarm. Generally, the agents' interactions exhibit a high degree of complexity that makes it impossible to skip nonlinearities in the model. In this paper, is implemented both a collective interaction using a modified Vicsek model where each agent follows a local group velocity and the individual interaction concerning internal and external obstacle avoidance. The proposed strategies are tested for the migration of a unicycle robot swarm in an unknown environment, where the effectiveness and the migration time are analyzed. To this aim, a new optimal control method for nonlinear dynamical systems and cost functions, named Feedback Local Optimality Principle - FLOP, is applied

    Unconventional phonon-mediated superconductivity in MgB_{2}

    Full text link
    We have evaluated the total carrier mass enhancement factor f_{t} for MgB_{2} from two independent experiments (specific heat and upper critical field). These experiments consistently show that f_{t} = 3.1\pm0.1. The unusually large f_{t} is incompatible with the measured reduced gap (2\Delta (0)/k_{B}T_{c} = 4.1) and the total isotope-effect exponent (\alpha = 0.28\pm0.04) within the conventional phonon-mediated model. We propose an unconventional phonon-mediated mechanism, which is able to quantitatively explain the values of T_{c}, f_{t}, \alpha, and the reduced energy gap in a consistent way.Comment: 4 pages, 1 figure
    • 

    corecore