48,202 research outputs found

    Electronic state and superconductivity of YBa2Cu3-xO7-y (M=Al,Zn and Sn) systems

    Get PDF
    A series of YBa2Cu(3-x)MxO(7-y) (M=Al,Zn and Sn) single phase samples were prepared, and the measurements of the crystal structure, oxygen content, electric resistivity, thermoelectric power, Mossbauer spectrum, XPS and superconductivity were performed. The experimental results of X ray powder diffraction, Mossbauer spectrum and oxygen content show that the Zn(2+) and the Al(3+) occupy the Cu(2) site in Cu-O planes and the Cu(1) site in Cu-O chains respectively, but the Sn(4+) occupies both the Cu(1) sites. As regards the properties in superconducting state, both the Zn(2+) and the Al(3+) depress T(sub c) strongly, but the Sn(4+) does not. As for the electronic transport properties in normal state, the system doped by Al(3+) displays a rapid increase of resistivity and some electron localization-like effects, and the thermoelectric power enhances obviously; the series contained Zn(2+) almost shows no changes of electric resistivity but the sign of the thermoelectric power is reversed. Other results are given and briefly discussed

    Quark model predictions for K∗K^* photoproduction on the proton

    Full text link
    The photoproduction of K∗K^* vector mesons is investigated in a quark model with an effective Lagrangian. Including both baryon resonance excitations and {\it t}-channel exchanges, observables for the reactions γp→K∗0Σ+\gamma p\to K^{*0}\Sigma^+ and γp→K∗+Σ0\gamma p\to K^{*+}\Sigma^0 are predicted, using the SU(3)-flavor-blind assumption of non-perturbative QCD.Comment: Revtex, 3 eps figures, revised version accepted by PRC Rapid Comm

    Two Kinds of Iterative Solutions for Generalized Sombrero-shaped Potential in NN-dimensional Space

    Full text link
    Based on two different iteration procedures the groundstate wave functions and energies for N-dimensional generalized Sombrero-shaped potentials are solved. Two kinds of trial functions for the iteration procedure are defined. The iterative solutions are convergent nicely to consistent results for different choices of iteration procedures and trial functions.Comment: 16 pages, 3 figure

    Relations Between Low-lying Quantum Wave Functions and Solutions of the Hamilton-Jacobi Equation

    Get PDF
    We discuss a new relation between the low lying Schroedinger wave function of a particle in a one-dimentional potential V and the solution of the corresponding Hamilton-Jacobi equation with -V as its potential. The function V is ≥0\geq 0, and can have several minina (V=0). We assume the problem to be characterized by a small anhamornicity parameter g−1g^{-1} and a much smaller quantum tunneling parameter ϵ\epsilon between these different minima. Expanding either the wave function or its energy as a formal double power series in g−1g^{-1} and ϵ\epsilon, we show how the coefficients of g−mϵng^{-m}\epsilon^n in such an expansion can be expressed in terms of definite integrals, with leading order term determined by the classical solution of the Hamilton-Jacobi equation. A detailed analysis is given for the particular example of quartic potential V=1/2g2(x2−a2)2V={1/2}g^2(x^2-a^2)^2.Comment: LaTex, 48 pages, no figur

    Conduction mechanisms of epitaxial EuTiO3 thin films

    Full text link
    To investigate leakage current density versus electric field characteristics, epitaxial EuTiO3 thin films were deposited on (001) SrTiO3 substrates by pulsed laser deposition and were post-annealed in a reducing atmosphere. This investigation found that conduction mechanisms are strongly related to temperature and voltage polarity. It was determined that from 50 to 150 K the dominant conduction mechanism was a space-charge-limited current under both negative and positive biases. From 200 to 300 K, the conduction mechanism shows Schottky emission and Fowler-Nordheim tunneling behaviors for the negative and positive biases, respectively. This work demonstrates that Eu3+ is one source of leakage current in EuTiO3 thin films.Comment: 17 pages,4 figures, conferenc

    Correlations among superconductivity, structural instability, and band filling in Nb1-xB2 at the critical point x=0.2

    Full text link
    We performed an extensive investigation on the correlations among superconductivity, structural instability and band filling in Nb1-xB2 materials. Structural measurements reveal that a notable phase transformation occurs at x=0.2, corresponding to the Fermi level (EF) in the pseudogap with the minimum total density of states (DOS) as demonstrated by the first-principles calculations. Superconductivity in Nb1-xB2 generally becomes visible in the Nb-deficient materials with x=0.2. Electron energy-loss spectroscopy (EELS) measurements on B K-edge directly demonstrated the presence of a chemical shift arising from the structural transformation. Our systematical experimental results in combination with theoretical analysis suggest that the emergence of hole states in the sigma-bands plays an important role for understanding the superconductivity and structural transition in Nb1-xB2.Comment: 16 pages, 4 figure
    • …
    corecore