104,602 research outputs found

    Probability of Detecting a Planetary Companion during a Microlensing Event

    Get PDF
    The probability of detecting a planetary companion of a lensing star during a microlensing event toward the Galactic center, averaged over all relevant event and galactic parameters, when the planet-star mass ratio q=0.001q=0.001 has a maximum exceeding 10% at an orbit semimajor axis aa near 1.5 AU for a uniform distribution of impact parameters. The maximum probability is raised to more than 20% for a distribution of source-lens impact parameters that is determined by the efficiency of event detection. The averaging procedures are carefully defined, and they determinine the dependence of the detection probabilities on several properties of the Galaxy. The probabilities scale approximately as q\sqrt{q}. A planet is assumed detectable if the perturbation of the single lens light curve exceeds 2/(S/N)2/(S/N) for at least 20 consecutive photometric points sometime during the event. Two meter telescopes with 60 second integrations in I-band with high time resolution photometry throughout the duration of an ongoing event are assumed. The probabilities are derived as a function of aa, where they remain significant for 0.6<a<100.6<a<10 AU. Dependence of the detection probabilities on the lens mass function, luminosity function of the source stars as modified by extinction, distribution of source-lens impact parameters, and the line of sight to the source are also determined, and the probabilities are averaged over the distribution of the projected planet position, the lens mass function, the distribution of impact parameters, the lens and source distances as weighted by their distributions along the line of sight and over the II-band apparent luminosity function of the sources. The extraction of the probabilility as a function of aa for a particular qq from empirical data is indicated.Comment: 32 pages, 20 figures, In Press, ApJ, Latex format with aas2pp4 forma

    Fluorine Abundances of Galactic Low-Metallicity Giants

    Full text link
    With abundances and 2{\sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358{\AA} using nearinfrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {\nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {\nu}-process with a neutrino energy of E_{\nu} = 3 x 10^53 erg. Our sample contains HD 110281, a retrograde orbiting low-{\alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.Comment: 8 pages, 8 figures, 2 tables, published in The Astrophysical Journa

    NLTE study of scandium in the Sun

    Full text link
    We investigate the formation of neutral and singly ionized scandium lines in the solar photospheres. The research is aimed derive solar loggfϵ\log gf\epsilon_{\odot}(Sc) values for scandium lines, which will later be used in differential abundance analyses of metal-poor stars. Extensive statistical equilibrium calculations were carried out for a model atom, which comprises 92 terms for \ion{Sc}{i} and 79 for \ion{Sc}{ii}. Photoionization cross-sections are assumed to be hydrogenic. Synthetic line profiles calculated from the level populations according to the NLTE departure coefficients were compared with the observed solar spectral atlas. Hyperfine structure (HFS) broadening is taken into account. The statistical equilibrium of scandium is dominated by a strong underpopulation of \ion{Sc}{i} caused by missing strong lines. It is nearly unaffected by the variation in interaction parameters and only marginally sensitive to the choice of the solar atmospheric model. Abundance determinations using the ODF model lead to a solar Sc abundance of between logϵ=3.07\log\epsilon_\odot = 3.07 and 3.13, depending on the choice of ff values. The long known difference between photospheric and meteoritic scandium abundances is confirmed for the experimental ff-values.Comment: 10 pages, 6 figures, A&A accepte

    Intrinsic electron-doping in nominal "non-doped" superconducting (La,Y)2_2CuO4_4 thin films grown by dc magnetron sputtering

    Full text link
    The superconducting nominal "non-doped" La1.85Y0.15CuO4La_{1.85}Y_{0.15}CuO_4 (LYCO) thin films are successfully prepared by dc magnetron-sputtering and in situ post-annealing in vacuum. The best TC0T_{C0} more than 13K is achieved in the optimal LYCO films with highly pure c-axis oriented T'-type structure. In the normal state, the quasi-quadratic temperature dependence of resistivity, the negative Hall coefficient and effect of oxygen content in the films are quite similar to the typical Ce-doped T'-214 cuprates, suggesting that T'-LYCO shows the electron-doping nature like known n-type cuprates, and is not a band superconductor as proposed previously. The charge carriers are considered to be induced by oxygen deficiency.Comment: 5 pages, 7 figure

    The wedding of modified dynamics and non-exotic dark matter in galaxy clusters

    Full text link
    We summarize the status of Modified Newtonian Dynamics (MOND) in galaxy clusters. The observed acceleration is typically larger than the acceleration threshold of MOND in the central regions, implying that some dark matter is necessary to explain the mass discrepancy there. A plausible resolution of this issue is that the unseen mass in MOND is in the form of ordinary neutrinos with masses just below the experimentally detectable limit. In particular, we show that the lensing mass reconstructions of the clusters 1E0657-56 (the bullet cluster) and Cl0024+17 (the ring) do not pose a new challenge to this scenario. However, the mass discrepancy for cool X-ray emitting groups, in which neutrinos cannot cluster, pose a more serious problem, meaning that dark baryons could present a more satisfactory solution to the problem of unseen mass in MOND clusters.Comment: to appear in World Scientific, proceedings of DARK 200

    The non-linear evolution of bispectrum from the scale-free N-body simulation

    Full text link
    We have accurately measured the bispectrum for four scale-free models of structure formation with the spectral index n=1n=1, 0, -1, and -2. The measurement is based on a new method that can effectively eliminate the alias and numerical artifacts, and reliably extend the analysis into the strongly non-linear regime. The work makes use of a set of state-of-the art N-body simulations that have significantly increased the resolution range compared with the previous studies on the subject. With these measured results, we demonstrated that the measured bispectrum depends on the shape and size of kk-triangle even in the strongly nonlinear regime. It increases with wavenumber and decreases with the spectral index. These results are in contrast with the hypothesis that the reduced bispectrum is a constant in the strongly non-linear regime. We also show that the fitting formula of Scoccimarro & Frieman (1999) does not describe our simulation results well (with a typical error about 40 percent). In the end, we present a new fitting formula for the reduced bispectrum that is valid for 2n0-2 \leq n \leq 0 with a typical error of 10 percent only.Comment: 33 pages, including 1 table, 14 figures, accepted by Ap
    corecore