1,615 research outputs found

    Dilatancy relation for overconsolidated clay

    Get PDF
    A distinct feature of overconsolidated (OC) clays is that their dilatancy behavior is dependent on the degree of overconsolidation. Typically, a heavily OC clay shows volume expansion, whereas a lightly OC clay exhibits volume contraction when subjected to shear. Proper characterization of the stress-dilatancy behavior proves to be important for constitutive modeling of OC clays. This paper presents a dilatancy relation in conjunction with a bounding surface or subloading surface model to simulate the behavior of OC clays. At the same stress ratio, the proposed relation can reasonably capture the relatively more dilative response for clay with a higher overconsolidation ratio (OCR). It may recover to the dilatancy relation of a modified Cam-clay (MCC) model when the soil becomes normally consolidated (NC). A demonstrative example is shown by integrating the dilatancy relation into a bounding surface model. With only three extra parameters in addition to those in the MCC model, the new model and the proposed dilatancy relation provide good predictions on the behavior of OC clay compared with experimental data

    Tidal capture of an asteroid by a magnetar: FRB-like bursts, glitch and anti-glitch

    Full text link
    Recently, remarkable anti-glitch and glitch accompanied by bright radio bursts of the Galactic magnetar SGR J1935+2154 were discovered. These two infrequent temporal coincidences between the glitch/anti-glitch and the fast radio burst (FRB)-like bursts reveal their physical connection of them. Here we propose that the anti-glitch/glitch and FRB-like bursts can be well understood by an asteroid tidally captured by a magnetar. In this model, an asteroid is tidally captured and disrupted by a magnetar. Then, the disrupted asteroid will transfer the angular momentum to the magnetar producing a sudden change in the magnetar rotational frequency at the magnetosphere radius. If the orbital angular momentum of the asteroid is parallel (or anti-parallel) to that of the spinning magnetar, a glitch (or anti-glitch) will occur. Subsequently, the bound asteroid materials fall back to the pericenter and eventually are accreted to the surface of the magnetar. Massive fragments of the asteroid cross magnetic field lines and produce bright radio bursts through coherent curvature radiation. Our model can explain the sudden magnetar spin changes and FRB-like bursts in a unified way.Comment: 6 pages, 1 figure, published by MNRAS https://doi.org/10.1093/mnras/stad158

    Decoy State Quantum Key Distribution With Modified Coherent State

    Full text link
    To beat PNS attack, decoy state quantum key distribution (QKD) based on coherent state has been studied widely. We present a decoy state QKD protocol with modified coherent state (MCS). By destruction quantum interference, MCS with fewer multi-photon events can be get, which may improve key bit rate and security distance of QKD. Through numerical simulation, we show about 2-dB increment on security distance for BB84 protocol.Comment: 4 pages, 4 figure

    Malicious Agent Detection for Robust Multi-Agent Collaborative Perception

    Full text link
    Recently, multi-agent collaborative (MAC) perception has been proposed and outperformed the traditional single-agent perception in many applications, such as autonomous driving. However, MAC perception is more vulnerable to adversarial attacks than single-agent perception due to the information exchange. The attacker can easily degrade the performance of a victim agent by sending harmful information from a malicious agent nearby. In this paper, we extend adversarial attacks to an important perception task -- MAC object detection, where generic defenses such as adversarial training are no longer effective against these attacks. More importantly, we propose Malicious Agent Detection (MADE), a reactive defense specific to MAC perception that can be deployed by each agent to accurately detect and then remove any potential malicious agent in its local collaboration network. In particular, MADE inspects each agent in the network independently using a semi-supervised anomaly detector based on a double-hypothesis test with the Benjamini-Hochberg procedure to control the false positive rate of the inference. For the two hypothesis tests, we propose a match loss statistic and a collaborative reconstruction loss statistic, respectively, both based on the consistency between the agent to be inspected and the ego agent where our detector is deployed. We conduct comprehensive evaluations on a benchmark 3D dataset V2X-sim and a real-road dataset DAIR-V2X and show that with the protection of MADE, the drops in the average precision compared with the best-case "oracle" defender against our attack are merely 1.28% and 0.34%, respectively, much lower than 8.92% and 10.00% for adversarial training, respectively

    Temporal evolution of depolarization and magnetic field of FRB 20201124A

    Full text link
    Fast radio bursts (FRBs) are energetic millisecond phenomena in radio band. Polarimetric studies of repeating FRBs indicate that many of these sources occupy extreme and complex magneto-ionized environments. Recently, a frequency-dependent depolarization has been discovered in several repeating FRBs. However, the temporal evolution of polarization properties is limited by the burst rate and observational cadence of telescopes. In this letter, the temporal evolution of depolarization in repeating FRB 20201124A is explored. Using the simultaneous variation of rotation measure and dispersion measure, we also measure the strength of a magnetic field parallel to the line-of-sight. The strength ranges from a few μG\mu {\rm G} to 103 μG10^3\ \mu {\rm G}. In addition, we find that the evolution of depolarization and magnetic field traces the evolution of rotation measure. Our result supports that the variation of depolarization, rotation measure and the magnetic field are determined by the same complex magneto-ionized screen surrounding the FRB source. The derived properties of the screen are consistent with the wind and the decretion disk of a massive star.Comment: 9 pages, 3 figures, 1 table, accept for publication in ApJ

    The physical origin of the periodic activity for FRB 20180916B

    Full text link
    Fast radio bursts (FRBs) are transient radio signals with millisecond-duration, large dispersion measure (DM) and extremely high brightness temperature. Among them, FRB 20180916B has been found to have a 16-day periodic activity. However, the physical origin of the periodicity is still a mystery. Here, we utilize the comprehensive observational data to diagnose the periodic models. We find that the ultra-long rotation model is the most probable one for the periodic activity. However, this model cannot reproduce the observed rotation measure (RM) variations. We propose a self-consistent model, i.e., a massive binary containing a slowly rotational neutron star and a massive star with large mass loss, which can naturally accommodate the wealth of observational features for FRB 20180916B. In this model, the RM variation is periodic, which can be tested by future observations.Comment: 12 pages, 8 figure

    Quantum repeaters free of polarization disturbance and phase noise

    Full text link
    Original quantum repeater protocols based on single-photon interference suffer from phase noise of the channel, which makes the long-distance quantum communication infeasible. Fortunately, two-photon interference type quantum repeaters can be immune to phase noise of the channel. However, this type quantum repeaters may still suffer from polarization disturbance of the channel. Here we propose a quantum repeaters protocol which is free of polarization disturbance of the channel based on the invariance of the anti-symmetric Bell state ∣ψ−>=(∣H>∣V>−∣V>∣H>)/2|\psi^->=(|H>|V>-|V>|H>)/\sqrt{2} under collective noise. Our protocol is also immune to phase noise with the Sagnac interferometer configuration. Through single-atom cavity-QED technology and linear optics, this scheme can be implemented easily.Comment: 5 pages, 2 figure

    Characterization and identification of in vitro metabolites of (-)-epicatechin using ultra-high performance liquid chromatography-mass spectrometry

    Get PDF
    Purpose: To characterize and identify metabolites of (-)-epicatechin in microsomal fraction of rat hepatocytes (MFRHs). Methods: A single incubation of (-)-epicatechin (1 mL, 50 µg/mL) in MFRH (0.5 mg/mL) was used for the generation of metabolites. Thereafter, the sample was subjected to protein precipitation prior to analysis with ultra-high performance liquid chromatography coupled to linear ion-trap orbitrap mass spectrometry (UHPLC-LTQ-Orbitap MS). Results: Nine metabolites of (-)-epicatechin were characterized on the basis of high resolution mass measurement, MS spectra and literature data. Based on their structures, the major metabolic routes of (-)-epicatechin in MFRHs were identified as hydroxylation, dihydroxylation and glycosylation. Conclusion: This is the first report on metabolites of (-)-epicatechin in MFRHs, and it is helpful in gaining deeper insight into the metabolism of (-)-epicatechin in vivo. The results will also provide guidance in research on the pharmacokinetics of new drugs. Keywords: (-)-Epicatechin, Metabolites, Hydroxylation, Dihydroxylation, Glycosylation, Rat liver microsomes, Pharmacokinetic studie
    • …
    corecore