13 research outputs found

    Association between long-term exposure to fine particulate matter constituents and progression of cerebral blood flow velocity in Beijing: Modifying effect of greenness

    Get PDF
    Few studies have explored the effects of fine particulate matter (PM2.5) and its constituents on the progression of cerebral blood flow velocity (BFV) and the potential modifying role of greenness. In this study, we investigated the association of PM2.5 and its constituents, including sulfate (SO42−), nitrate (NO3−), ammonium (NH4+), organic matter (OM), and black carbon (BC), with the progression of BFV in the middle cerebral artery. Participants from the Beijing Health Management Cohort who underwent at least two transcranial Doppler sonography examinations during 2015–2020 were recruited. BFV change and BFV change rate were used to define the progression of cerebral BFV. Linear mixed effects models were employed to analyze the data, and the weighted quantile sum regression assessed the contribution of PM2.5 constituents. Additionally, greenness was examined as a modifier. Among the examined constituents, OM exhibited the strongest association with BFV progression. An interquartile range increase in PM2.5 and OM exposure concentrations was associated with a decrease of −16.519 cm/s (95% CI: −17.837, −15.201) and −15.403 cm/s (95% CI: −16.681, −14.126) in BFV change, and −10.369 cm/s/year (95% CI: −11.387, −9.352) and −9.615 cm/s/year (95% CI: −10.599, −8.632) in BFV change rate, respectively. Furthermore, stronger associations between PM2.5 and BFV progression were observed in individuals working in areas with lower greenness, those aged under 45 years, and females. In conclusion, reducing PM2.5 levels in the air, particularly the OM constituent, and enhancing greenness could potentially contribute to the protection of cerebrovascular health

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Spatiotemporal Dynamics of Land Cover and Their Driving Forces in the Yellow River Basin since 1990

    No full text
    The national strategy for ecological protection and high-quality development is raising the ecological security protection to an unprecedented level in the Yellow River Basin (YRB) of China. Due to the explicitly analyzed land cover changes under climate change and rapid urbanization in the YRB area since 1990, land cover dynamic degree index, transfer matrix, and geo-detector method were used to explicate land cover changes and their key driving factors, based on the spatial data of land cover from 1990 to 2020. The results show that grasslands, croplands, and forests are the main land cover types, accounting for 48.37%, 25.05%, and 13.50%, respectively, of the total area in the YRB area. Grassland, cropland, and cropland are the major land cover type, accounting for 61.49%, 37.13%, and 66.33%, respectively, in the upstream, midstream, and downstream of the YRB area. Built-up land has showed a continual increasing trend, and its dynamic degree was up to 3.38% between 2010 and 2020. Population density was a key factor for land cover change, with an average contribution rate of 0.264; then, elevation and temperature also expressed an important role to drive the land cover change in the YRB area during the period from 1990 to 2020

    Removal of Dissolved Oxygen from Water by Nitrogen Stripping Coupled with Vacuum Degassing in a Rotor–Stator Reactor

    No full text
    Oxygen is a harmful substance in many processes because it can bring out corrosion and oxidation of food. This study aimed to enhance the removal of dissolved oxygen (DO) from water by employing a novel rotor–stator reactor (RSR). The effectiveness of the nitrogen stripping coupled with vacuum degassing technique for the removal of DO from water in the RSR was investigated. The deoxygenation efficiency (η) and the mass transfer coefficient (KLa) were determined under various operating conditions for the rotational speed, liquid volumetric flow rate, gas volumetric flow rate, and vacuum degree. The nitrogen stripping coupled with vacuum degassing technique achieved values for η and KLa of 97.34% and 0.0882 s−1, respectively, which are much higher than those achieved with the vacuum degassing technique alone (η = 89.95% and KLa = 0.0585 s−1). A correlation to predict the KLa was established and the predicted KLa values were in agreement with the experimental values, with deviations generally within 20%. The results indicate that RSR is a promising deaerator thanks to its intensification of gas–liquid contact

    High-efficiency Bessel beam array generation by Huygens metasurfaces

    No full text
    Bessel beams have attracted considerable interest because of their unique non-diffractive, self-healing characteristics. Different approaches have been proposed to generate Bessel beams, such as using axicons, diffractive optical elements, composite holograms, or spatial light modulators. However, these approaches have suffered from limited numerical aperture, low efficiency, polarization-dependent properties, etc. Here, by utilizing dielectric Huygens metasurfaces as ultrathin, compact platforms by integrating the functionalities of Dammann gratings and axicons, we successfully demonstrate multiple Bessel beam generation with polarization-independent property. The number of two-dimensional arrays can be controlled flexibly, which can enhance information capacity with a total efficiency that can reach 66.36%. This method can have various applications, such as parallel laser fabrication, efficient optical tweezers, and optical communication
    corecore